Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
NPG | Articles | Volume 25, issue 3
Nonlin. Processes Geophys., 25, 693–712, 2018
https://doi.org/10.5194/npg-25-693-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nonlin. Processes Geophys., 25, 693–712, 2018
https://doi.org/10.5194/npg-25-693-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Sep 2018

Research article | 13 Sep 2018

A novel approach for solving CNOPs and its application in identifying sensitive regions of tropical cyclone adaptive observations

Linlin Zhang et al.

Related authors

CNOP based on ACPW for Identifying Sensitive Regions of Typhoon Target Observations with WRF Model
Bin Mu, Linlin Zhang, Shijin Yuan, and Wansuo Duan
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-24,https://doi.org/10.5194/npg-2019-24, 2019
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389, https://doi.org/10.5194/npg-27-373-2020,https://doi.org/10.5194/npg-27-373-2020, 2020
Short summary
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020,https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Brief communication: Residence time of energy in the atmosphere
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020,https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020,https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary

Cited articles

Aberson, S. D.: Targeted Observations to Improve Operational Tropical Cyclone Track Forecast Guidance, Mon. Weather Rev., 131, 1631–1628, 2003. 
Bender, M. A., Ross, R. J., and Tuleya, R. E., and Kurihara, Y.: Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system, Mon. Weather Rev., 121, 2046–2061, 1993. 
Bergot T.: Adaptive observations during FASTEX: A systematic survey of upstream flights, Q. J. Roy. Meteorol. Soc., 125, 3271–3298, 1999. 
Dee, D. P., Uppala, S. M., Simmons, A. J., and 33 co-authors: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011. 
Franklin, J. L. and Demaria, M.: The Impact of Omega Dropwindsonde Observations on Barotropic Hurricane Track Forecasts, Mon. Weather Rev., 120, 381–391, 1992. 
Publications Copernicus
Download
Short summary
We propose a novel approach to solve conditional nonlinear optimal perturbation for identifying sensitive areas for tropical cyclone adaptive observations. This method is free of adjoint models and overcomes two obstacles, not having adjoint models and having dimensions higher than the problem space. All experimental results prove that it is a meaningful and effective method for solving CNOP and provides a new way for such research. This work aims to solve CNOP and identify sensitive areas.
We propose a novel approach to solve conditional nonlinear optimal perturbation for identifying...
Citation