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Abstract. In this paper, a novel approach is pro-
posed for solving conditional nonlinear optimal perturba-
tions (CNOPs), called the adaptive cooperative coevolution
of parallel particle swarm optimization (PSO) and the Wolf
Search algorithm (WSA) based on principal component anal-
ysis (ACPW). Taking Fitow (2013) and Matmo (2014), two
tropical cyclone (TC) cases, CNOPs solved by the ACPW
algorithm are used to investigate the sensitive regions iden-
tified by TC adaptive observations with the fifth-generation
Mesoscale Model (MM5). Meanwhile, the 60 and 120 km
resolutions are adopted. The adjoint-based method (short for
the ADJ method) is also applied to solve CNOPs, and the
result is used as a benchmark. To evaluate the advantages
of the ACPW algorithm, we run the PSO, WSA and ACPW
programs 10 times and then compare the maximum, mini-
mum and mean objective values as well as the RMSEs. The
analysis results prove that the hybrid strategy and cooperative
coevolution are useful and effective. To validate the ACPW
algorithm, the CNOPs obtained from the different methods
are compared in terms of the patterns, energies, similarities
and simulated TC tracks with perturbations. The results of
our study may be summarized as follows:

1. The ACPW algorithm can capture similar CNOP pat-
terns as the ADJ method, and the patterns of TC Fitow
are more similar than TC Matmo.

2. At the 120 km resolution, similarities between the
CNOPs of the ADJ method and the ACPW algorithm
are more than those at the 60 km resolution.

3. Compared to the ADJ method, although the CNOPs of
the ACPW method produce lower energies, they can
have improved benefits gained from the reduction of the
CNOPs not only across the entire domain but also in the
identified sensitive regions.

4. The sensitive regions identified by the CNOPs from the
ACPW algorithm have the same influence on the im-
provements of the skill of TC-track forecasting as those
identified by the CNOPs from the ADJ method.

5. The ACPW method is more efficient than the ADJ
method. All conclusions prove that the ACPW algo-
rithm is a meaningful and effective method for solving
CNOPs and can be used to identify sensitive regions of
TC adaptive observations.

1 Introduction

Tropical cyclones (TCs) are one of the most frequent and
influential natural hazards in the world. An accurate fore-
cast of TCs is conducive to the response of the government
and people. Thus, it is essential to improve the skill of TC
forecasting. One effective way is to identify the sensitive re-
gions of TC adaptive observations (TCAOs) (Franklin and
Demaria, 1992; Bergot, 1999; Aberson, 2003). Once obser-
vations in sensitive regions are identified and added to reduce
initial errors, better forecasts will be expected (Bender et al.,
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1993; Zhu and Thorpe, 2006; Froude et al., 2007). Condi-
tional nonlinear optimal perturbations (CNOPs) proposed by
Mu and Duan (2003) are a nonlinear extension of the linear
singular vector (SV) method and have been applied to study
the successful identification of sensitive regions by TCAOs
(Mu et al., 2009; Qin, 2010; Zhou and Mu, 2011, 2012a, b;
Zhou and Zhang, 2014; Qin and Mu, 2012; Qin et al., 2013;
Qin and Mu, 2014; Wang et al., 2010, 2013).

Comparing between the sensitive regions identified from
CNOPs and those identified through SVs, Qin (2010) con-
cludes that the former is more appropriate for TCAOs. Zhou
and Mu (2011) use the CNOP method to investigate dif-
ferent verification areas and how to affect the identifica-
tion of sensitive regions. They also studied the influence of
different horizontal resolutions (2012a). Moreover, different
times and regime dependency were also researched (2012b).
These research results directed further research. Zhou and
Zhang (2014) propose three schemes for identifying sensi-
tive regions based on the CNOP method and recommend
the vertically integrated energy scheme. Moreover, some re-
searchers analyze the sensitivity of dropwindsonde observa-
tions on TC predictions, which can be used in the CNOP
method, and conclude that the sensitive regions identified by
CNOPs have a positive impact on TC-track predictions (Qin
and Mu, 2012; Qin et al., 2013). In studies of improving
the sensitivity of CNOPs in TC intensity forecasts, Qin and
Mu (2014) suggest that the use of an ocean-coupled model
needs to be considered as well as the better initialization of
the TC vortex. Wang et al. (2013) use the CNOP method to
study the mutual effects of binary typhoons. Previous studies
have shown that the CNOP method is a useful and mean-
ingful method for studying the aforementioned phenomenon
(Zhou et al., 2013; Mu and Zhou, 2015).

There are generally two types of methods for solving
CNOPs, one based on adjoint models (ADJ method) and
one without adjoint models. As useful and effective methods
for solving CNOPs without adjoint models, some modified
intelligent algorithms (IAs) based on dimension reduction
have been successfully proposed and applied to solve CNOPs
in the Zebiak–Cane (ZC) (Zebiak and Cane, 1987) model,
such as SAEP (simulated annealing based ensemble project-
ing method) (Wen et al., 2014), PPSO (principal compo-
nent analysis-based particle swarm optimization – Mu et al.,
2015a; principal component analysis, PCA – Jolliffe, 1986),
PCGD (principal component-based great deluge) (Wen et al.,
2015a), RGA (robust PCA-based genetic algorithm) (Wen
et al., 2015b), CTS-SS (continuous Tabu search algorithm
with sine maps and staged strategy) (Yuan et al., 2015) and
PCAGA (principal component analysis-based genetic algo-
rithm) (Mu et al., 2015b). Compared to the ADJ method,
these methods all obtain CNOPs with similar spatial patterns
and acceptable objective function values. Several of them
have been parallelized with the message passing interface
(MPI), reducing the computation time. In TC adaptive obser-
vations, such adjoint-free methods are also required because

the lack of adjoint models and solution spaces with too many
dimensions have become obstacles for solving CNOPs; this
is a focal point of this study.

We have adopted the PCAGA method to solve CNOPs
for the sensitive regions identified by TCAOs with the fifth-
generation Mesoscale Model (MM5) and obtained meaning-
ful results (Zhang et al., 2017). However, we used a resolu-
tion of 120 km, which is the lowest in such research. When
using a higher resolution, information on a smaller scale can
be predicted and more accurate sensitive regions can be ex-
pected. It is necessary to use a higher resolution. Moreover,
although the PCAGA method achieves meaningful results, its
performance is not sufficient because it is based on a genetic
algorithm, which has a good global searching ability but a
slow convergence rate. In addition, the PCAGA method was
not parallelized in the previous study.

Therefore, in this paper, we propose a novel approach, the
adaptive cooperative coevolution of parallel particle swarm
optimization (PSO) and Wolf Search algorithm (WSA)
(ACPW) based on the PCA to solve CNOPs for the sensi-
tive regions identified by TCAOs. We take two tropical cy-
clones as study cases, Fitow (2013) and Matmo (2014), and
simulate them with the MM5 model using two different res-
olutions, 60 and 120 km. According to the study of Zhou and
Zhang (2014), we adopt the total dry energy as the objec-
tive function. The CNOPs from the ADJ method are referred
to as a benchmark. Specific details of the ADJ method can
be found in Zhou (2009). To validate the ACPW method,
the CNOPs from the ACPW method are compared with the
benchmark in terms of the patterns, energies, similarities and
benefits from the CNOPs reduced in the entire domain and
in sensitive regions. Further, the CNOPs with different reso-
lutions are also compared in terms of these aspects. To eval-
uate the sensitive regions located by the ACPW algorithm,
we simulate TC tracks with the initial states perturbed by the
amended CNOPs in the location of the sensitive regions from
the ACPW algorithm and ADJ method. Moreover, we design
two schemes to amend the CNOPs using the same points and
the equivalent proportional points. In addition, we evaluate
the efficiency of the ACPW algorithm. All experimental re-
sults show that the ACPW method is a meaningful and ef-
fective method to solve CNOPs for selecting the sensitive
regions of TCAOs.

The organization of the paper is as follows. Section 2 de-
scribes the formalized definition of CNOPs and the ACPW
method. In Sect. 3, we give the design of the experiments in
this study. Section 4 presents the experimental analysis and
results. Summaries and conclusions are provided in Sect. 5.
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2 Theory and method

2.1 CNOPs

The mathematical formalism of CNOPs is described in
Eq. (1). Under the constraint condition ‖u0‖

2
≤ δ, an initial

perturbation δu∗0 of vector U0 (initial basic state) is called a
CNOP if and only if

J
(
δu∗0

)
= J (uNT), (1)

where

uNT = PM (U0+ δu0)−PM (U0) , (2)

and P represents a local projection operator and the value
within the verification region is 1 and 0 elsewhere. In addi-
tion,

Ut =Mt0→t (U0) , (3)

where M expresses a nonlinear propagation operator, and Ut
is the development of U0 at time t .

2.2 ACPW method

In this paper, we propose the ACPW method to solve CNOPs
for identifying sensitive regions of TCAOs. The core of this
approach is the cooperative coevolution of two intelligent al-
gorithms, the PSO and WSA, and the adaptive number of
two sub-swarms. PSO is a classic population-based stochas-
tic optimization technique developed by Kennedy and Eber-
hart (1995) and inspired by the social behaviors of bird flock-
ing or fish schooling. The technique has been successfully
and effectively applied to solve CNOPs in the ZC model for
studying El Niño–Southern Oscillation (ENSO) predictions
(Mu et al., 2015a). The WSA is a new bio-inspired heuris-
tic optimization algorithm based on wolf preying behaviors,
which was proposed by Tang et al. (2012) and has been ap-
plied to studying the traveling salesman problem with test
functions. Their experiments showed that the WSA is an ef-
fective global optimizing algorithm but requires long compu-
tation times.

We have adopted the PSO and WSA methods to solve
CNOPs in the MM5 model, although the results exhibit slow
convergence or premature convergence. Hence, we combine
the advantages of these two algorithms. We use the WSA
to explore the global space due to its independence and use
PSO to examine the local space and ensure the convergence
of the ACPW algorithm. Moreover, we design the adaptive
sub-swarms of the PSO and WSA for cooperative coevolu-
tion. The ACPW framework is shown in Fig. 1.

In Fig. 1, the most important part of the ACPW algorithm
is inside the dotted box. We divide the entire initial swarm
into two sub-swarms with the same number of individuals;
one updates the individuals with the PSO’s rule and the other

Figure 1. The framework of the ACPW method.

with the WSA’s rule. Then, the two sub-swarms are adap-
tively varied along with the convergence state of the ACPW
algorithm. When the change in the objective function adap-
tive value is less than a threshold value, the number of indi-
viduals in the sub-swarm belonging to the WSA is increased
and the other sub-swarm belonging to PSO is decreased by
an equal number of individuals to keep the same number for
the entire swarm. A more specific analysis of the ACPW al-
gorithm is discussed in Sect. 4.

The process of solving CNOPs with the ACPW algorithm
is described as follows:

1. Randomly generate an initial swarm with N individu-
als. An individual ui needs to satisfy the boundary con-
straint in the terms of Eq. (4). Once ui goes beyond the
boundary, it must be pulled back, i.e.,

ui =

 ui ‖ui‖ ≤ δ,
δ

‖ui‖
× ui ‖ui‖> δ,

i = 1, · · ·,N. (4)

Divide the entire initial swarm into two sub-swarms
with an adaptive coefficient α. One sub-swarm updates
individuals with the PSO’s rule and the other with the
WSA’s rule.

2. Calculate the adaptive value of the objective function in
parallel, i.e.,= J (ui) in Eq. (1).

3. Update individuals by the PSO (Eq. 5) or the WSA
(Eq. 6). When{
vk+1
i = ωvki + c1α

(
oki − u

k
i

)
+ c2β

(
okg− u

k
i

)
,

uk+1
i = uki + γ v

k+1
i ,

(5)

the superscript k or k+ 1 is the iterative step, vk+1
i is

the velocity of the individual uki calculated by the first
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Table 1. The parameters of the ACPW.

Name Meaning Value

n Number of principle components 50

N Number of individuals
420 at 120 km

200 at 60 km
a Adaptive coefficient Initial: 0.5
ω Inertia coefficient 0.8

c1
Self-awareness to track the

2.05
historically optimal position

c2
Social awareness of the particle swarm to

2.05
track the globally optimal position

ϒ Restraint factor to control the speed 0.729
θ Velocity of individual 0.5
r Local optimizing radius 8× δ/original dimensions
s Step size of updating individual 0.6

pa
Probability of individual escaping

0.3
from current position

Total_Step The number of iterations 50

sub-formula, ω is the inertia coefficient, c1 and c2 are
the learning factors, α and β are the random numbers
uniformly distributed on the interval from 0 to 1, oki is
the local optimum, okg is the global optimum in the kth
iteration, γ is the restraint factor to control the speed
and uk+1

i is the updated individual based on PSO.

There are two ways for updating individuals in the
WSA, prey and escape, which represent the functions
of searching in a local region and escaping from a local
optimum. These are represented as{
uk+1
i = uki + θ · r · rand ( ) Prey,
uk+1
i = uki + θ · s · escape ( ) Escape,

(6)

where the superscript k or k+1 is also the iterative step,
θ is the velocity, r is the local optimizing radius that
is smaller than the global constraint radius δ, rand( )
is the random function whose mean value is distributed
in [−1,1], escape( ) is the function for calculating a
random position that is 3 times larger than r and s is the
step size of the updating individual.

As described in Eq. (6), the wolf has two behaviors, i.e.,
prey and escape. The prey behavior uses the first sub-
formula, and the second one is for the escape function
that happens in every iteration when the condition p >
pa is satisfied, where p is a random number in [0,1] and
pa is the probability of an individual escaping from the
current position.

4. Judge whether the change in the adaptive value of the
objective function is smaller than ε. If so, set a new
value for the adaptive sub-swarm coefficient α. If not,
continue running the process. The detailed updating

procedure for α is described as

α =

{
α+ 0.05, if the bestvalue− current value< ε,
α− 0.05, else. (7)

In this paper, before we update the individuals, α is cal-
culated and we divide the entire initial swarm into two
sub-swarms according to the α value i.e., the number of
individuals depending on the PSO’s rule is α×N and
the other number is (1−α)×N . We set the initial value
of ε and α to 0.1 and 0.5, respectively.

5. Judge whether the termination condition is satisfied. If
so, terminate the iteration. Otherwise, go to step 2.

All of the above processes are based on the dimension re-
duction within the PCA, a procedure that has been described
in the study of Mu et al. (2015a). After many experiments,
the parameters of the ACPW algorithm can be set, as shown
in Table 1.

Although there are more parameters than demanded for
each single algorithm, most retain the empirical value of
each algorithm and do not require adjustments. The reason
for using a different number of individuals is that the inter-
nal storage memory was not sufficient when using more than
200 individuals, resulting in the premature termination of the
ACPW algorithm.

3 Experiment design

All the experiments are run on a Lenove Thinkserver RD430
with two Intel Xeon E5-2450 2.10 GHz CPUs, 32 logical
cores and 132G RAM. The operating system is CentOS 6.5.
All the codes are written in the FORTRAN language and
compiled by the PGI Compiler 10.2.

Nonlin. Processes Geophys., 25, 693–712, 2018 www.nonlin-processes-geophys.net/25/693/2018/
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3.1 The model and data

In this paper, we adopt the MM5 model to study the sen-
sitive region identification of TCAOs and the corresponding
adjoint system of the MM5 model (Zou et al., 1997) is used to
obtain the benchmark. The ERA interim daily analysis data
(1◦× 1◦) (Dee et al., 2011) from the European Centre for
Medium range Weather Forecasts (ECMWF) are used to gen-
erate the initial and boundary conditions. The physical pa-
rameterization schemes are defined as dry convective adjust-
ment, the high-resolution planetary boundary-layer scheme,
grid-resolved large-scale precipitation, and the Kuo cumulus
parameterization scheme.

We also utilize the best TC-track data (Ying et al., 2014)
from the China Meteorological Administration–Shanghai
Typhoon Institute (CMA–SHTI) as TC tracks observed for
evaluating the simulation TC tracks of the MM5 model.

3.2 Typhoons Fitow (2013) and Matmo (2014)

TCs Fitow (2013) and Matom (2014) are taken as the study
cases and introduced below. Fitow was the 23rd TC in 2013
and developed to the east of the Philippines on 29 Septem-
ber, striking China at Fuding in Fujian Province on 6 Octo-
ber. Matom was the 10th named typhoon in 2014. It formed
on 17 July and reached land in Taiwan on 22 July. In these
two cases, 24 h control forecasts are set as background fields
based on integration from 00:00 UTC 5 October 2013 to
00:00 UTC 6 October 2013 (TC Fitow) and from 18:00 UTC
21 July 2014 to 18:00 UTC 22 July 2014 (TC Matom). After
the 24 h period, TC Fitow had a maximum sustained wind
of 162 km h−1 whereas TC Matmo had a maximum wind
speed of 151.2 km h−1. In addition, the forecasts were exe-
cuted at the 60 km and 120 km resolutions with 11 vertical
levels, and the model domain covered 55× 55 and 21× 26
grids, respectively.

The simulated TC tracks from the MM5 model for these
two cases are acceptable, as has been shown in our previous
study (Zhang et al., 2017). The following analysis is based
on those simulations.

3.3 Experimental setup

Because slight changes in the verification area never hurts
the results (Zhou and Mu, 2011), we design the verification
areas as rectangles covering the potential typhoon tracks at
the forecast time.

The initial perturbation sample δu0 is composed of the
perturbed zonal wind u0

′, meridional wind v0
′, temperature

T ′0 and surface pressure p′s0
. Each component can be rep-

resented as a matrix am× n× l, where m× n is the distri-
bution of the horizontal grid, and l denotes the number of
vertical levels. To extract features for reducing the dimen-
sions and solving CNOPs, the m× n× l matrix is reshaped
to a k× 1 vector, where k =m× n× l× S (S is the number

of the components). Assuming we have R vectors to repre-
sent the features of the solution space, we recombine the R

vectors to a k×R matrix and use the PCA to capture the fea-
ture space with lower dimensions. Then, the CNOP is solved
in the space of the feature until we obtain the global CNOP,
which will be projected to the original solution space. When
using the ACPW algorithm to solve CNOPs, its initial inputs
are produced randomly in the feature space, and the CNOP
has the largest nonlinear evolution at the prediction time, i.e.,
the largest adaptive value of the objective function in Eq. (9).
The objective function is measured by the total dry energy
(Zhou and Zhang, 2014) since it has been proven that the
sensitive regions gained by the dry energy are more benefi-
cial than those obtained from the moist energy (Zhou, 2009).

The following is defined as

f (i,j)=

1∫
0

ET(i,j,σ )dσ, (8)

where ET (i,j,σ ) denotes the total dry energy of the CNOP
at the MM5 grid point (i,j,σ ).

Corresponding to Formulas (1) and (2), we have

(uNT)=
1
D

∫
D

1∫
0

[
u
′2
t + v

′2
t +

cp

Tr
T
′2

t +RaTr

(
p′st
pr

)2
]

· dσdD, (9)

where u′t, vt′ , T ′t and p′st are the components of uNT, which
is the nonlinear development of the perturbed U0 (i.e., U0+

δu0) from the initial time t0 to the prediction time t , and σ is
the vertical coordinate. Table 2 illustrates the other reference
parameters.

For the convenience of optimization, solving CNOPs can
be transformed into a minimized problem as

J
(
δu∗0

)
=

− 1
D

∫
D

1∫
0

[
u′

2
t + v

′2
t +

cp

Tr
T ′

2
t +RaTr

(
p′st
pr

)2
]

· dσdD). (10)

To facilitate understanding, all symbols are listed in Table 2,
and their meanings are explained.

4 Experimental results and analysis

To evaluate the advantages of the ACPW algorithm, we run
the PSO, WSA and ACPW programs 10 times and then com-
pare the maximum, minimum and mean objective values as
well as the RMSE. We also exhibit the objective value scope
after the first iteration to analyze the effect of initial objective
values on the different algorithms. Meanwhile, to illustrate
the performance of the algorithms, we compare the degree
of change of the objective function value for the three algo-
rithms.
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Table 2. The meanings of all symbols.

Symbols Values/components Meanings

δu0 u′0, v′0, T ′0, p′s0, Initial perturbation

uNT u′t,v
′
t,T
′
t,p
′
st

Nonlinear evolution of
perturbed U0 at time t

D Values rely on cases Verification area
σ (0, 1] Vertical coordinate

cp 1005.7 J kg−1 K−1 Specific heat at
constant pressure

Ra 287.04 J kg−1 K−1 Gas constant of dry air
Tr 270 K Constant parameter
pr 1000 hPa Constant parameter

Figure 2. Box plot of the PSO, WSA and ACPW methods for TC
Fitow at the 60 km resolution. The red box denotes PSO, the green
box is for the WSA, and the blue box shows the results of the ACPW
algorithm.

4.1 The advantages of the ACPW algorithm

Because the statistical analysis results are similar for the two
TCs with two resolutions, we only describe the analysis of
Fitow at a resolution of 60 km. Table 3 presents the maxi-
mum objective value, the minimum objective value, the mean
objective value and the RMSE of the 10 results.

In Table 3, the maximum objective value is gained from
the ACPW algorithm, and its mean value is also more than
the other two algorithms. However, the RMSE of the PSO is
the smallest, which shows the most stability.

For additional analysis, we draw a box plot of the 10 re-
sults for the PSO, WSA and ACPW algorithms, as shown in
Fig. 2. PSO has the narrowest range of values, although the
objective values are smaller than the other two algorithms.
The WSA has the widest range of values, although the ob-
jective values are also smaller than the ACPW algorithm.
The ACPW algorithm has the second best stability, although
it has the best objective values. The experiments display the
stability of the PSO and the exploitation of the WSA. We

Figure 3. The first objective value scope of the PSO, WSA and
ACPW methods. PSO is denoted as the red line, the WSA is shown
as the green line and the ACPW algorithm is represented as the blue
line.

combine the advantages of the PSO and WSA methods and
use them to develop the ACPW algorithm to solve CNOPs.
The analysis results demonstrate that the hybrid strategy and
cooperative coevolution is both useful and effective.

Since these three algorithms are all heuristic algorithms
generated randomly and the initial inputs are also generated
by random way, the initial objective value is different for ev-
ery run. To analyze the effect of initial objective values on the
different algorithms, we exhibit the objective value scope of
the PSO, WSA and ACPW algorithms after the first iteration
in Fig. 3.

In Fig. 3, for convenience, only the integer is indicated in
the coordinate system. In 10 experiments, the PSO has the
narrowest scope, from 467.1719 to 781.6482. The WSA and
ACPW algorithms have similar value spans that are wider
than the PSO, but the objective values of the ACPW are
higher. And the value scope is reasonable according to the
characteristics of these three algorithms. The WSA is the
most random, the PSO is the most stable and the ACPW com-
bines the advantages of the two. From the results, we cannot
find the direct relationship between the initial objective value
and the final results, but a better first objective value is bene-
ficial in finding the optimal value.

To illustrate the improved performance of the ACPW algo-
rithm, we calculate the average objective value of every step
in 10 program results and obtain the change degree between
the two iterations. We draw them in Fig. 4. If the objective
value is continuously changing, then the algorithm has bet-
ter global searching ability. Otherwise, the algorithm tends to
experience a drop in local optimization.

In Fig. 4, the degree of change is calculated from the sub-
traction of two objective values. For example, the objective
value of the second iteration minus the first objective value is

Nonlin. Processes Geophys., 25, 693–712, 2018 www.nonlin-processes-geophys.net/25/693/2018/
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Table 3. The analysis results of the PSO, WSA and ACPW methods. The bold numbers represent the best values.

Algorithm Maximum value Minimum value Mean value RMSE

PSO 1034.192573 724.086002 900.7488578 0.121400896
WSA 1628.841294 323.7493169 930.9103862 0.431193448
ACPW 2240.275956 1243.377921 1542.505251 0.216750584

Figure 4. The degree of change of the PSO, WSA and ACPW meth-
ods. PSO is denoted as the red line, the WSA is shown as the green
line and the ACPW algorithm is represented as the blue line.

the first degree of change m has better performance than the
PSO and WSA, because we combine their strengths using
hybrid strategy and cooperative coevolution.

4.2 CNOP patterns

To validate the ACPW algorithm for solving CNOPs and to
identify the sensitive regions, we compare the ADJ method
and the ACPW algorithm results in terms of the CNOP pat-
terns, energies, similarities, benefits from reduction of the
CNOPs and simulated TC tracks with perturbations.

In this subsection, we compare the CNOPs obtained from
the ADJ method and the ACPW algorithm in terms of the
patterns of temperature and wind. Experimental results show
that TC Fitow has more similar CNOP patterns than TC
Matmo. The CNOP patterns are described in Fig. 5.

At the 120 km resolution for TC Fitow (Fig. 5a, b), the two
methods have nearly the same major warm locations and sim-
ilar cold regions, while the wind vectors have opposite direc-
tions. The ADJ method captures the CNOP with two major
locations. The red (warm) location is distributed to the west
of the initial cyclone (IC), while the green (cold) location
is distributed to the north of the IC. The ACPW algorithm
also captures the CNOP with two main locations. The warm
one is distributed to the west and the cold one is located to
the northwest of the IC. In this subsection, the spatial orien-

tation is relative to the position of the IC. Therefore, in the
following discussion, we explain the spatial orientation in the
figures without repeating the IC.

For the TC Fitow analysis with a 60 km resolution (Fig. 5c,
d), the CNOP spatial distribution based on the ACPW al-
gorithm is very similar to the ADJ method’s results. In the
northwest of the verification area, the two CNOPs have two
similar major parts, a warm area and a cold area. The dif-
ference between these two patterns is that the ADJ method
has another major warm area located in the northwest, while
the ACPW method produces another major warm area in the
east. The distribution of the secondary parts exhibits only a
slight difference.

For the same method with different resolutions (Fig. 5a,
c and b, d), the CNOP patterns have similar major distribu-
tions in the northwest, although these occur within a differ-
ent region. The reason is that when using a higher resolution,
more small-scale phenomena can be resolved (Zhou and Mu,
2012a).

For the analysis of TC Matmo with a 120 km resolution
(Fig. 6a, b), the ADJ method and the ACPW algorithm ob-
tain CNOPs with different spatial patterns in terms of temper-
ature and wind. The ADJ method has two major parts, with
the warm part located in the west and the cold one in the east.
The ACPW algorithm results in two main parts distributed in
the northeast, with a warm area near the IC and a cold one
far from the IC. For the analysis of TC Matmo with a 60 km
resolution (Fig. 6c, d), in the verification area, the two CNOP
patterns have similar spatial distributions, with two warm ar-
eas located at nearly the same positions. However, the parts
outside the verification area are distributed in different lo-
cations. Moreover, the CNOP of the ADJ method has more
regular distributions than the ACPW’s distributions. For the
same method with a different resolution (Fig. 6a, c and b,
d), the CNOP patterns cover similar areas but with different
ranges and details.

Based on the above analysis regarding the patterns of tem-
perature and wind, we can conclude that when using a res-
olution of 60 km, the CNOPs predicted by the ADJ method
and the ACPW algorithm have more similar major patterns
than those predicted at a resolution of 120 km. In addition,
the ACPW algorithm can obtain CNOPs with more similar
patterns in TC Fitow than in TC Matmo.

The vertically integrated energies of the CNOPs for TC Fi-
tow are displayed in Fig. 7. Compared to the ADJ method, at
the 120 km resolution, the CNOPs of the ACPW method have
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Figure 5. CNOP patterns at σ = 0.7 for TC Fitow. The shaded parts represent temperature (units: K), and the vectors describe the wind
(units: m s−1). The squares indicate the verification areas, and the initial cyclone positions are shown by ⊕. Letters (a) and (b) denote the
CNOP patterns at the 120 km resolution for the ADJ method and the ACPW algorithm, respectively, while letters (c) and (d) represent the
CNOP patterns at the 60 km resolution for the ADJ method and the ACPW algorithm, respectively.

much lower energy and differing positions. However, when
using a resolution of 60 km, similar energies and positions
are obtained. Moreover, the energy of the CNOPs obtained
from the ACPW algorithm has a larger range in the center.

Vertically integrated energies of the CNOPs for TC Matmo
are displayed in Fig. 8. Compared with the ADJ method, at
the 120 km resolution, the CNOPs of the ACPW algorithm
have a lower energy and cover larger areas. However, when
using a resolution of 60 km, although the energy is still lower,
the positions are more similar.

4.3 Similarities

When we evaluate the CNOPs, in addition to the character-
istics and distributions of the CNOP patterns, consideration
should also be given to the numerical similarities and the
benefits of the CNOPs. Therefore, we calculate the similar-
ity between the CNOPs determined from the ADJ method
and the ACPW algorithm and use X and Y to represent them
in the following formula, in which

Sxy =
〈X,Y 〉

√
〈X,X〉

√
〈Y,Y 〉

. (11)

Table 4. The similarities of CNOPs gained from the ACPW and
ADJ method.

ACPW/ADJ method 120 km 60 km

Fitow −0.83 0.43
Matmo 0.42 0.37

The results are shown in Table 4. The similarity values can
reflect the similarities among the CNOP patterns (Figs. 5 and
6).

In Table 4, for TC Fitow, the similarity at 120 km is−0.83,
whereas the similarity with a resolution of 60 km is 0.43. For
the analysis of TC Matmo, the similarity at 120 km is 0.42,
whereas that with a resolution of 60 km is 0.37. The neg-
ative sign indicates that portions of the CNOPs from these
two methods have opposite wind–vector directions, which is
shown in Fig. 5. We also find that when using a higher res-
olution, the similarity is lower. The reason for this finding is
that although the major patterns of the CNOPs are similar,
the secondary parts differ and they cover larger areas. When
using a higher resolution, we can achieve information on a
smaller scale, and the identification of sensitive regions be-
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Figure 6. As described in Fig. 5 for tropical storm Matmo.

Figure 7. As described in Fig. 5, except where the shaded parts represent the vertically integrated energies (units: J kg−1).
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Figure 8. As described in Fig. 6, except where the shaded parts represent the vertically integrated energies (units: J kg−1).

Figure 9. Benefits (in %) gained from reducing the CNOPs to W ×CNOPs for the ADJ method and the ACPW algorithm across the entire
domain for TC Fitow (2013). The x coordinate represents the W coefficient values, and the y coordinate denotes the benefits (in %) derived
from the two methods. The ADJ method is presented as the black line with squares, and the ACPW result is the red line with circles.

comes more accurate. Regarding the analysis of the CNOP
patterns, we obtain more similar major patterns when for a
resolution of 60 km. However, compared with the different
parts, the similar parts are very small. The similarities de-
creased do not affect the identification of the sensitive regions

because the adaptive observations only focus on the points
with larger influences, which will be demonstrated Sect. 4.4.

We also compare the energy for 24 h of nonlinear develop-
ment under the initial states perturbed by different CNOPs,
i.e., J (M(U0+ δu

∗

0)). The results are shown in Table 5. All
CNOPs obtained using the ACPW produce lower energies
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Figure 10. Benefits (in %) gained by reducing the CNOPs to W ×CNOPs for the ADJ method and the ACPW algorithm across the entire
domain for TC Matmo (2014). The x coordinate is the W coefficient values, and the y coordinate denotes the benefits (in %) derived from
the two methods. The ADJ method is presented as the black line with squares, and the ACPW result is the red line with circles.

Figure 11. Sensitive regions identified by the CNOPs with 20 points for TC Fitow. The squares indicate the verification areas, and the initial
cyclone positions are shown as⊕. Letters (a) and (b) denote the CNOP patterns at the 120 km resolution for the ADJ method and the ACPW
algorithm, respectively, while letters (c) and (d) represent the CNOP patterns at the 60 km resolution for the ADJ method and the ACPW
algorithm, respectively.

than the those of the ADJ method. However, when reducing
the CNOPs to W ×CNOPs in the entire domain and reduc-
ing the CNOPs by a factor of 0.5 in the sensitive regions, the
ACPW algorithm has better results, which will be discussed
in following subsection.

4.4 Benefits from reducing the CNOPs

In this subsection, we design two groups of idealized experi-
ments to investigate the validity of the sensitive regions iden-
tified using CNOPs based on two assumptions.

First, when adding adaptive observations in sensitive re-
gions, the surrounding environment is idealized, and the im-
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Figure 12. Sensitive regions identified by the CNOPs with 20 points for TC Matmo. The squares indicate the verification areas, and the
initial cyclone positions are shown as ⊕. Letters (a) and (b) denote the CNOP patterns at the 120 km resolution for the ADJ method and the
ACPW algorithm, respectively, while letters (c) and (d) represent the CNOP patterns at the 60 km resolution for the ADJ method and the
ACPW algorithm, respectively.

Table 5. The ratios of energy for 24 h evolution through the inser-
tion of the CNOPs from the ACPW algorithm and ADJ method into
the initial states.

ACPW/ADJ method 120 km 60 km

Fitow 94.1% 85.1%
Matmo 87.3% 70.2%

provements from adding observations reduce the original er-
rors by a factor of 0.5.

Second, the obtained CNOPs can be seen as the optimal
initial perturbations. Once we reduce them in the sensitive
regions, the benefits are the highest.

Under these assumptions, by reducing the CNOPs to W ×
CNOPs and inserting them into the initial states, we can in-
vestigate how the reductions in the CNOPs influence the skill
of TC forecasting. Moreover, reducing the CNOPs by a fac-
tor of 0.5 in the identified sensitive regions by vertically inte-
grating the energies can be used investigate how the addition
of adaptive observations in the sensitive regions can impact
the skill of TC forecasting.

First, because CNOPs can be seen as the optimal ini-
tial perturbations in the TCAOs, we reduce the CNOPs to
W ×CNOPs, where W is a coefficient in (0, 1), insert the
reduced CNOPs into the initial state and allow for 24 h of

evolution of the MM5 model. Then, we calculate the fore-
cast error using Formula (14) to determine the benefits of
the reductions. Second, we determine the sensitive regions
via vertically integrated energies using two schemes, namely
the same points in the different resolutions and the equiva-
lent percentage of points from the different grids. Then, we
reduce the CNOPs by a factor of 0.5 in only the sensitive re-
gions and insert the amended CNOPs into the initial states.
The model is run for 24 h. The experimental results are de-
scribed below.

4.4.1 Reducing the CNOPs to W × CNOPs in the entire
domain

We explore the forecast improvements induced by reducing
the CNOPs to W ×CNOPs for the entire domain. The ap-
proach requires using the reduced CNOPs in their initial state
for a 24 h simulation of the MM5 model. The prediction error
is computed by Formula (12), where

J1 (uNT)= ‖PM (U0+ δu0)−PM (U0)‖
2, (12)

and the definitions of uNT, P , M and U0 are the same as in
Eqs. (1), (2), and (3).

The prediction error after reducing the CNOPs for the en-
tire domain is computed by Formula (13), where

J2 (uNT)= ‖PM (U0+Wδu0)−PM (U0)‖
2, (13)
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Figure 13. Sensitive regions identified by the CNOPs with 6 points at the 120 km resolution and 30 points at the 60 km resolution for TC
Fitow. The squares indicate the verification areas, and the initial cyclone positions are shown as ⊕. The letters (a) and (b) denote the CNOP
patterns at the 120 km resolution for the ADJ method and the ACPW algorithm, respectively, while letters (c) and (d) represent the CNOP
patterns at the 60 km resolution for the ADJ method and the ACPW algorithm, respectively.

Figure 14. Sensitive regions identified by the CNOPs with 6 points at the 120 km resolution and 30 points at the 60 km resolution for
TC Fitow. The squares indicate the verification areas, and the initial cyclone positions are shown as ⊕. Letters (a) and (b) denote the CNOP
patterns at the 120 km resolution for the ADJ method and the ACPW algorithm, respectively, while letters (c) and (d) represent the CNOP
patterns at the 60 km resolution for the ADJ method and the ACPW algorithm, respectively.
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Table 6. Benefits (in %) gained from reducing the CNOPs by a fac-
tor of 0.5 in the sensitive regions identified by the ADJ method and
the ACPW algorithm with 20 points. The bold numbers represent
the best values of the ACPW.

Cases Methods 60 km 120 km

Fitow
ADJ method 3 % 5.93 %
ACPW −0.84 % 8.05 %

Matmo
ADJ method 6.12 % 20.90 %
ACPW 20.48 % 16.26 %

and W is the weighting coefficient, which is set to 0.25, 0.5
or 0.75 for decreasing error. The benefit from such reductions
is calculated by Formula (14), represented as

J1 (uNT)− J2 (uNT)

J1 (uNT)
. (14)

The prediction benefit increases for decreasing W . Figures 9
and 10 also show that the ACPW algorithm can obtain
CNOPs with better benefits from reducing the CNOPs to
W ×CNOPs for the entire domain than the ADJ method ex-
cept for when W is 0.25 for TC Fitow at a resolution of
60 km. This is because the ACPW algorithm optimizes a low-
dimensional feature space due to the PCA and focuses on
more effective points in the entire domain, which has posi-
tive effects on improving the forecast.

4.4.2 Reducing the CNOPs by a factor of 0.5 in the
sensitive regions

We explore the forecast improvement caused by reducing the
CNOPs by a factor of 0.5 in the sensitive regions. We de-
termine the sensitive regions based on vertically integrated
energies using two schemes, the 20 points with the highest
energy at the different resolutions and 1/100 points of the
different grids, which is 30 points at the 60 km resolution
(55× 55) and 6 points at the 120 km resolution (21× 26).
The sensitive regions with the 20 points having the highest
energy are denoted in Figs. 11 and 12.

In Figs. 11 and 12, when the equivalent points approach is
adopted, a larger scope is covered with the 120 km resolution
than with the 60 km resolution. When using the 20 points
from the ADJ method and the ACPW algorithm and reducing
the CNOPs by a factor of 0.5, the benefits are displayed in
Table 6.

In Table 6, for TC Fitow, compared to the ADJ method,
i.e., 5.93 % at the 120 km resolution and 3 % at the 60 km
resolution, the ACPW algorithm obtains a higher benefit
(8.05 %) for a resolution of 120 km and a lower benefit
(−0.84) for a resolution of 60 km. Here, −0.84 % means
that a reduction in the CNOPs results in no benefit and nar-
rows the quality of the initial state. For the analysis of TC
Matmo, the ACPW algorithm achieves a much higher bene-
fit (20.48 %) than the ADJ method (6.12 %) at the 60 km res-

Table 7. Benefits (in %) gained from reducing the CNOPs by a
factor of 0.5 in the sensitive regions identified by the ADJ method
and the ACPW algorithm with 6 points at the 120 km resolution and
30 points at the 60 km resolution. The bold numbers represent the
best values of the ACPW.

60 km 120 km
Cases Methods (30 points) (6 points)

Fitow
ADJ method 3.9 1.72 %
ACPW 4.23 % 0.01%

Matmo
ADJ method 1.21 % 13.24 %
ACPW 9.75 % 6.86 %

olution and a lower benefit (16.26 %) than the ADJ method
(20.90 %) at the 120 km resolution. In addition, when using
the same number of energy points, the benefits from using the
120 km resolution are nearly as high as those for the 60 km
resolution except for the ACPW algorithm at 60 km resolu-
tion for TC Matmo.

The sensitive regions with 1/100 points from the different
grids are denoted in Figs. 13 and 14.

Figures 13 and 14 show that when using different resolu-
tions, the sensitive regions identified by the same method are
different. The sensitive regions identified by the ACPW al-
gorithm are more dispersive than those identified by the ADJ
method, which is attributed to the randomness of the intelli-
gent algorithms. Table 7 shows the benefits gained from re-
ducing the CNOPs by a factor of 0.5 in the sensitive regions
identified by the ADJ method and the ACPW algorithm with
different points in the different resolutions.

According to Table 7, for TC Fitow, the ACPW algo-
rithm achieves a 4.23 % benefit, which is higher than the
ADJ method (3.9 %) at the 60 km resolution and a lower
benefit 0.01 % than the ADJ method (1.72 %) at the 120 km
resolution. For the analysis of TC Matmo, the ACPW algo-
rithm also has a higher benefit (9.75 %) and a lower benefit
(6.86 %) than the ADJ method (1.21 % and 13.24 %, respec-
tively).

Combined with Tables 6 and 7, we can conclude that the
sensitive regions cover a larger scope and higher benefits are
obtained. When using the same proportion of grids with the
different resolutions, the sensitive regions under higher reso-
lution achieve higher benefits. These results also demonstrate
that the CNOPs obtained from the ACPW algorithm can
identify sensitive regions with higher benefits at the 60 km
resolution.
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Figure 15. Simulated TC tracks from MM5 through the insertion of the CNOPs or W ×CNOP into the initial state in the entire domain for
TC Fitow. Solid circles represent the observed TC tracks from the CMA, and the hollow circles show the simulated TC tracks from the MM5
model. Letters (a), (b), (c) and (d) denote the CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP results, respectively.

Figure 16. Simulated TC tracks from MM5 through the insertion of the CNOPs or W ×CNOP into the initial state in the entire domain for
TC Matmo.
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Figure 17. Simulated TC tracks from MM5 through the insertion of the amended CNOPs, which are reduced by a factor of 0.5 only in the
sensitive regions, into the initial state for TC Fitow. Solid circles represent the observed TC tracks from the CMA, and the hollow circles
show the simulated TC tracks from the MM5 model. (a), (b), (c) and (d) denote the ADJ method with 20 points, ADJ method with 30 points,
ACPW algorithm with 20 points and the ACPW algorithm with 30 points, respectively.

4.5 Simulated TC tracks

We further investigate the validity of the sensitive regions
identified by the CNOPs through using a comparison of sim-
ulated TC tracks predicted by the MM5 model for each case
by inserting the CNOPs orW ×CNOPs into the initial states.
We also simulate the TC tracks through the insertion of the
amended CNOPs in the different sensitive regions (20 or 30
points). Because 120 km is the lowest resolution in this re-
search and the tracks cannot be drawn under this resolution
in our study, we only analyze the simulated TC tracks at the
60 km resolution. We draw two tracks in a sub-figure, which
are represented by the observed TC tracks from the CMA–
SHTI and the simulated TC track from the MM5 model, and
the different perturbations are overlayed onto the same ini-
tial states. According to the experimental results, when over-
laying the CNOPs or amended CNOPs onto the same initial
states, although the CNOPs are obtained from different meth-
ods, the simulated tracks are the same. Therefore, we only
discuss one group of figures for each case. The results are
presented in Figs. 15 and 16.

Figure 15 demonstrates the simulated TC tracks of the
MM5 by inserting the CNOPs or W ×CNOP into the ini-
tial state for TC Fitow; the four sub-figures are the same.
The reason is that the deviations of the simulated TC track

and the observed TC track are very small. Therefore, it is not
easy to make improvements. Hence, when inserting different
CNOPs into identical initial states to simulate TC tracks, a
change is not evident. Moreover, the resolution we used was
60 km, which is not high enough to show more details about
changing tracks.

Figure 16 demonstrates the simulated TC tracks from the
MM5 model by inserting the CNOPs or W ×CNOP into the
initial state for TC Matmo. Figure 16a and b are the same,
and from Fig. 16b to d, the simulated positions after 24 h be-
come closer to the observed positions. These results illustrate
that when the CNOPs obtained by the ACPW algorithm and
ADJ method are used as the optimal initial perturbations, re-
ducing the CNOPs has a positive effect on the skill of the
forecasting of the simulated tracks. Moreover, the ACPW al-
gorithm is a meaningful and effective method for solving the
approximate CNOPs of the ADJ method.

We also simulate TC tracks by inserting the amended
CNOPs, which are reduced by a factor of 0.5 in only the
sensitive regions. We use 20 and 30 points as the sensitive
regions to study how the number of points affects the skill of
forecasting. The results are shown in Figs. 17 and 18.

In Figs. 17 and 18, the simulated TC tracks are the same
not only for different methods but also for different sensi-
tive regions. We can conclude that the ACPW algorithm, an
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Figure 18. Simulated TC tracks from MM5 through the insertion of the amended CNOPs, which are reduced by a factor of 0.5 only in the
sensitive regions, into the initial state for TC Matmo.

adjoint-free method, is a meaningful and effective method
for solving the approximate CNOPs of the ADJ method. Ac-
cording to these results, we can also conclude that using 20
or 30 points as the sensitive regions results in the same im-
provement in the TC tracks in terms of forecasting. Thus,
fewer points can be used in real adaptive observations to re-
duce costs.

4.6 The efficiency of the ACPW algorithm

To promote the efficiency of the ACPW algorithm, we paral-
lelize it with MPI technology. The time consumption of each
case is nearly the same. Hence, we can use a group of exper-
imental results to elucidate the efficiency of the ACPW al-
gorithm. Because the ADJ method cannot be parallelized be-
cause each input depends on the output of the previous step,
its time consumption is not changed. Moreover, because this
method generally uses 4∼ 8 initial guess fields to obtain the
optimal value, we use 1 and 4 initial guess fields to determine
the CNOPs. The time consumption of the ADJ method and
the ACPW algorithm are shown in Table 8.

At the 120 km resolution, the time consumption of the
ADJ method using 1 and 4 initial guess fields is 12.4 and
49.7 min, respectively. At the 60 km resolution, the time con-
sumption is 79.9 and 321.1 min, respectively. Unlike the ADJ
method, the ACPW algorithm can be parallelized. When us-
ing 22 cores, the ACPW method requires much less time,

Table 8. The time consumption of the ADJ method and the ACPW
algorithm (unit: min). The bold numbers represent that the ACPW
has the minimum time consumption.

Methods 60 km 120 km

ADJ method (1)∗ 79.9 12.4
ADJ method (4)∗ 321.1 49.7
ACPW 20.8 2.74
∗ ADJ method (1) means using 1 initial guess field
and ADJ method (4) means using 4 initial guess
fields.

i.e., 2.74 min at the 120 km resolution and 20.8 min at the
60 km resolution. Obviously, the ACPW is more efficient.
Compared to the ADJ method (1), the speedup reaches 4.53
and 3.84 for the different resolutions. Compared to the ADJ
method (4), the speedup reaches 18.14 and 15.44. Although
the different initial guess fields are calculated in parallel,
the time consumption must be higher than that of the ADJ
method (1), since the ACPW algorithm is also faster than the
ADJ method.

5 Summaries and conclusions

In this study, we present a novel approach, the adap-
tive cooperative coevolution of the parallelized PSO and
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WSA (ACPW), to solve CNOPs. The CNOPs based on the
ACPW algorithm are applied to study the identification of
sensitive regions by TCAOs in the MM5 model without using
an adjoint model. We study two TC cases, Fitow (2013) and
Matmo (2014), with 60 and 120 km resolutions. The objec-
tive function is set as the total dry energy based on 24 h sim-
ulations starting with initial perturbations at the prediction
time within the verification area. We also calculate CNOPs
with the ADJ method, using results as a benchmark. To val-
idate the ACPW algorithm, the CNOPs obtained from the
different methods are compared in terms of the patterns, en-
ergies, similarities, benefits in reducing the CNOPs and sim-
ulated TC tracks with perturbations. To evaluate the advan-
tages of the ACPW algorithm, we run the PSO, WSA and
ACPW programs 10 times and compare the maximum, min-
imum and mean objective values as well as the RMSE. We
also exhibit the objective value scope after the first iteration
to analyze the effect of initial objective values on the different
algorithms. To illustrate the performance of the algorithms,
we compare the degree of change of the objective function
value for the three algorithms. The analysis results demon-
strate that the hybrid strategy and cooperative coevolution
are useful and effective.

According to all of the experiments, the following five
conclusions are obtained:

1. Compared with the ADJ method, the ACPW algorithm
can obtain CNOPs with more similar patterns of temper-
ature and wind for TC Fitow than those for TC Matmo.

2. At the 120 km resolution, the similarities in the CNOPs
achieved by the ADJ method and the ACPW algorithm
are higher than those at the 60 km. The reason is that
although the major patterns of the CNOPs are similar,
the other parts differ and cover larger areas. At a higher
resolution, we can find information on a smaller scale.
Moreover, sensitive region identification becomes more
accurate. Regarding the CNOP patterns, more similar
major patterns are obtained at the 60 km resolution, al-
though the similar parts are very small compared with
the other differing parts. However, the decreased sim-
ilarities do not affect identifying sensitive regions be-
cause the adaptive observations only focus on the points
with a larger influence.

3. When adding adaptive observations in the sensitive re-
gions for a surrounding environment that is idealized,
the original errors are reduced by a factor of 0.5. Thus,
the CNOPs can be seen as the optimal initial perturba-
tions. Once they are reduced in the sensitive regions,
the benefits are highest. We design two groups of ideal-
ized experiments to investigate the validity of the sen-
sitive regions identified by the CNOPs for the skill of
TC-track forecasting. This involves reducing CNOPs to
W ×CNOPs and reducing the CNOPs by a factor of 0.5
in the sensitive regions identified using vertically inte-

grated energies. The experimental results show that the
CNOPs of the ACPW algorithm produce lower ener-
gies than the ADJ method but can obtain better benefits
when reducing the CNOPs.

4. The ACPW algorithm can be effective for identifying
the sensitive regions, which have the same influence on
the forecast improvements of the simulated TC tracks
as the ADJ method. We compare the different fore-
cast improvements of the TC tracks with the different
reduced perturbations, including reducing the CNOPs
to W ×CNOPs for the entire domain and reducing the
CNOPs by a factor of 0.5 in the sensitive regions. The
experimental results all support our conclusions.

5. The ACPW algorithm is more efficient than the ADJ
method. Compared to the ADJ method using 1 initial
guess field, the speedup reaches 4.53 at the 120 km res-
olution and 3.84 at the 60 km resolution. Compared to
the ADJ method using 4 initial guess fields, the speedup
reaches 18.14 and 15.44 for the 120 km and 60 km res-
olutions, respectively.

All of the conclusions demonstrate that the ACPW algorithm
is a meaningful and effective method for solving approximate
CNOPs and identifying the sensitive regions of TCAOs. In
addition, as we reduce the dimensions within the PCA, the
CNOPs lose some energy. Compared to the CNOPs form the
ADJ method, the CNOPs from the ACPW algorithm are all
local CNOPs. However, for the ACPW algorithm, they are
global CNOPs. Because the PCA makes our optimization fo-
cus on more effective points with higher energies, the ACPW
algorithm can achieve the CNOPs with better benefits and the
same improvements in the skill of TC-track forecasting.

We are restricted to computation sources for the time be-
ing. We are also limited by the parallelization of the ACPW
algorithm. We will improve the conditions of computation
and use the parallel ACPW algorithm to solve CNOPs in
the Weather Research and Forecasting (WRF) model with
a finer grid and higher resolution. In addition, we will ap-
ply this type of method to solve CNOPs in the Community
Earth System Model (CESM) model, which does not have an
adjoint model.
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