Articles | Volume 25, issue 4
https://doi.org/10.5194/npg-25-731-2018
https://doi.org/10.5194/npg-25-731-2018
Research article
 | 
06 Nov 2018
Research article |  | 06 Nov 2018

Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling

Sangeetika Ruchi and Svetlana Dubinkina

Related authors

Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41, https://doi.org/10.5194/npg-28-23-2021,https://doi.org/10.5194/npg-28-23-2021, 2021
Short summary
Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study
A. Mairesse, H. Goosse, P. Mathiot, H. Wanner, and S. Dubinkina
Clim. Past, 9, 2741–2757, https://doi.org/10.5194/cp-9-2741-2013,https://doi.org/10.5194/cp-9-2741-2013, 2013
An assessment of particle filtering methods and nudging for climate state reconstructions
S. Dubinkina and H. Goosse
Clim. Past, 9, 1141–1152, https://doi.org/10.5194/cp-9-1141-2013,https://doi.org/10.5194/cp-9-1141-2013, 2013
Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP
P. Mathiot, H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina
Clim. Past, 9, 887–901, https://doi.org/10.5194/cp-9-887-2013,https://doi.org/10.5194/cp-9-887-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Aanonsen, S. I., Nævdal, G., Oliver, D. S., Reynolds, A. C., and Vallès, B.: The ensemble Kalman filter in reservoir engineering – a review, SPE Journal, 14, 393–412, 2009.
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects, Mon. Weather Rev., 129, 420–436, 2001.
Chen, Y. and Oliver, D. S.: Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification, Computat. Geosci., 17, 689–703, 2013.
Cheng, Y. and Reich, S.: Data assimilation: a dynamical system perspective, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 2, 75–118, 2015.
Doucet, A., de Freitas, N., and Gordon, N.: Sequential Monte-Carlo Methods in Practice, Springer-Verlag, New York, 2001.
Download
Short summary
Accurate estimation of subsurface geological parameters is essential for the oil industry. This is done by combining observations with an estimation from a model. Ensemble Kalman filter is a widely used method for inverse modeling, while ensemble transform particle filtering is a recently developed method that has been applied to estimate only a small number of parameters and in fluids. We show that for a high-dimensional inverse problem it is superior to an ensemble Kalman filter.