Articles | Volume 25, issue 4
https://doi.org/10.5194/npg-25-731-2018
https://doi.org/10.5194/npg-25-731-2018
Research article
 | 
06 Nov 2018
Research article |  | 06 Nov 2018

Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling

Sangeetika Ruchi and Svetlana Dubinkina

Viewed

Total article views: 3,459 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,186 1,114 159 3,459 168 163
  • HTML: 2,186
  • PDF: 1,114
  • XML: 159
  • Total: 3,459
  • BibTeX: 168
  • EndNote: 163
Views and downloads (calculated since 23 Mar 2018)
Cumulative views and downloads (calculated since 23 Mar 2018)

Viewed (geographical distribution)

Total article views: 3,459 (including HTML, PDF, and XML) Thereof 3,016 with geography defined and 443 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 16 Sep 2025
Download
Short summary
Accurate estimation of subsurface geological parameters is essential for the oil industry. This is done by combining observations with an estimation from a model. Ensemble Kalman filter is a widely used method for inverse modeling, while ensemble transform particle filtering is a recently developed method that has been applied to estimate only a small number of parameters and in fluids. We show that for a high-dimensional inverse problem it is superior to an ensemble Kalman filter.
Share