Articles | Volume 25, issue 4
https://doi.org/10.5194/npg-25-731-2018
https://doi.org/10.5194/npg-25-731-2018
Research article
 | 
06 Nov 2018
Research article |  | 06 Nov 2018

Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling

Sangeetika Ruchi and Svetlana Dubinkina

Data sets

Data underlying the paper: Application of ensemble transform data assimilation methods for parameter estimation in reservoir modeling S. Dubinkina and S. Ruch https://doi.org/10.4121/uuid:2d0018ea-fecc-4d19-8532-5a718c9f28ca

Download
Short summary
Accurate estimation of subsurface geological parameters is essential for the oil industry. This is done by combining observations with an estimation from a model. Ensemble Kalman filter is a widely used method for inverse modeling, while ensemble transform particle filtering is a recently developed method that has been applied to estimate only a small number of parameters and in fluids. We show that for a high-dimensional inverse problem it is superior to an ensemble Kalman filter.