Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
NPG | Articles | Volume 25, issue 3
Nonlin. Processes Geophys., 25, 589–604, 2018
https://doi.org/10.5194/npg-25-589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 589–604, 2018
https://doi.org/10.5194/npg-25-589-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Aug 2018

Research article | 24 Aug 2018

Ensemble variational assimilation as a probabilistic estimator – Part 2: The fully non-linear case

Mohamed Jardak and Olivier Talagrand

Related authors

Ensemble variational assimilation as a probabilistic estimator – Part 1: The linear and weak non-linear case
Mohamed Jardak and Olivier Talagrand
Nonlin. Processes Geophys., 25, 565–587, https://doi.org/10.5194/npg-25-565-2018,https://doi.org/10.5194/npg-25-565-2018, 2018
Short summary

Related subject area

Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020,https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Brief communication: Residence time of energy in the atmosphere
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020,https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020,https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary
Data-driven versus self-similar parameterizations for stochastic advection by Lie transport and location uncertainty
Valentin Resseguier, Wei Pan, and Baylor Fox-Kemper
Nonlin. Processes Geophys., 27, 209–234, https://doi.org/10.5194/npg-27-209-2020,https://doi.org/10.5194/npg-27-209-2020, 2020
Short summary

Cited articles

Bardsley, J. M.: MCMC-Based Image Reconstruction with Uncertainty Quantification, SIAM J. Sci. Comput., 34, A1316–A1332, 2012. a
Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.: Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014. a
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013. a, b
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014. a, b
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504, https://doi.org/10.1080/16000870.2017.1304504, 2017. a
Publications Copernicus
Short summary
EnsVAR is fundamentally successful in that, even in conditions where Bayesianity cannot be expected, it produces ensembles which possess a high degree of statistical reliability. In non-linear strong-constraint cases, EnsVAR has been successful here only through the use of quasi-static variational assimilation. In the weak-constraint case, without QSVA, EnsVAR provided new evidence as to the favourable effect.
EnsVAR is fundamentally successful in that, even in conditions where Bayesianity cannot be...
Citation