Articles | Volume 25, issue 3
Nonlin. Processes Geophys., 25, 589–604, 2018
https://doi.org/10.5194/npg-25-589-2018

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 589–604, 2018
https://doi.org/10.5194/npg-25-589-2018

Research article 24 Aug 2018

Research article | 24 Aug 2018

Ensemble variational assimilation as a probabilistic estimator – Part 2: The fully non-linear case

Mohamed Jardak and Olivier Talagrand

Related authors

Ensemble variational assimilation as a probabilistic estimator – Part 1: The linear and weak non-linear case
Mohamed Jardak and Olivier Talagrand
Nonlin. Processes Geophys., 25, 565–587, https://doi.org/10.5194/npg-25-565-2018,https://doi.org/10.5194/npg-25-565-2018, 2018
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41, https://doi.org/10.5194/npg-28-23-2021,https://doi.org/10.5194/npg-28-23-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500, https://doi.org/10.5194/npg-27-489-2020,https://doi.org/10.5194/npg-27-489-2020, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020,https://doi.org/10.5194/npg-27-473-2020, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-38,https://doi.org/10.5194/npg-2020-38, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Bardsley, J. M.: MCMC-Based Image Reconstruction with Uncertainty Quantification, SIAM J. Sci. Comput., 34, A1316–A1332, 2012. a
Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.: Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014. a
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013. a, b
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014. a, b
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504, https://doi.org/10.1080/16000870.2017.1304504, 2017. a
Short summary
EnsVAR is fundamentally successful in that, even in conditions where Bayesianity cannot be expected, it produces ensembles which possess a high degree of statistical reliability. In non-linear strong-constraint cases, EnsVAR has been successful here only through the use of quasi-static variational assimilation. In the weak-constraint case, without QSVA, EnsVAR provided new evidence as to the favourable effect.