Articles | Volume 22, issue 6
https://doi.org/10.5194/npg-22-749-2015
https://doi.org/10.5194/npg-22-749-2015
Research article
 | 
21 Dec 2015
Research article |  | 21 Dec 2015

Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term

B.-W. Shen

Related authors

Revisiting Lorenz’s and Lilly’s Empirical Formulas for Predictability Estimates
Bo-Wen Shen, Roger Pielke Sr., and Xubin Zeng
EGUsphere, https://doi.org/https://doi.org/10.13140/RG.2.2.32941.15849,https://doi.org/https://doi.org/10.13140/RG.2.2.32941.15849, 2024
Short summary
On periodic solutions associated with the nonlinear feedback loop in the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2016-40,https://doi.org/10.5194/npg-2016-40, 2016
Revised manuscript not accepted
Short summary
Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model
Bo-Wen Shen
Nonlin. Processes Geophys., 23, 189–203, https://doi.org/10.5194/npg-23-189-2016,https://doi.org/10.5194/npg-23-189-2016, 2016
Short summary
On the nonlinear feedback loop and energy cycle of the non-dissipative Lorenz model
B.-W. Shen
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-519-2014,https://doi.org/10.5194/npgd-1-519-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary

Cited articles

Anthes, R.: Turning the tables on chaos: is the atmosphere more predictable than we assume?, UCAR Magazine, available at: https://www2.ucar.edu/atmosnews/opinion/turning-tables-chaos-atmosphere-more-predictable-we-assume-0, last access: 14 December 2015, 2011.
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. M.: Lyapunov Characteristic Exponents fro Smooth Dynamical Systems and for Hamiltonian Systems; A method for computing all of them. Part 1: Theory, Meccanica, 15, 9–20, 1980.
Blender, R. and Lucarini, V.: Nambu representation of an extended Lorenz model with viscous heating, Physica D, 243, 86–91, 2013.
Chen, Z.-M. and Price, W. G.: On the relation between Raleigh-Benard convection and Lorenz system, Chaos Soliton. Fract., 28, 571–578, 2006.
Christiansen, F. and Rugh, H.: Computing Lyapunov spectra with continuous Gram–Schmid orthonormalization, Nonlinearity, 10, 1063–1072, 1997.
Download
Short summary
While the negative nonlinear feedback associated with two new modes in the 5DLM can stabilize solutions, additional resolved heating processes by a third mode in the 6DLM can destabilize solutions. The findings support the view of Lorenz (1972) on the role of small-scale processes: if the flap of a butterfly’s wings can be instrumental in generating a tornado, it can equally well be instrumental in preventing a tornado.