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Abstract. In this study, a six-dimensional Lorenz model

(6DLM) is derived, based on a recent study using a five-

dimensional (5-D) Lorenz model (LM), in order to exam-

ine the impact of an additional mode and its accompanying

heating term on solution stability. The new mode added to

improve the representation of the streamfunction is referred

to as a secondary streamfunction mode, while the two addi-

tional modes, which appear in both the 6DLM and 5DLM but

not in the original LM, are referred to as secondary temper-

ature modes. Two energy conservation relationships of the

6DLM are first derived in the dissipationless limit. The im-

pact of three additional modes on solution stability is exam-

ined by comparing numerical solutions and ensemble Lya-

punov exponents of the 6DLM and 5DLM as well as the orig-

inal LM. For the onset of chaos, the critical value of the nor-

malized Rayleigh number (rc) is determined to be 41.1. The

critical value is larger than that in the 3DLM (rc∼ 24.74),

but slightly smaller than the one in the 5DLM (rc∼ 42.9).

A stability analysis and numerical experiments obtained us-

ing generalized LMs, with or without simplifications, sug-

gest the following: (1) negative nonlinear feedback in asso-

ciation with the secondary temperature modes, as first iden-

tified using the 5DLM, plays a dominant role in providing

feedback for improving the solution’s stability of the 6DLM,

(2) the additional heating term in association with the sec-

ondary streamfunction mode may destabilize the solution,

and (3) overall feedback due to the secondary streamfunc-

tion mode is much smaller than the feedback due to the sec-

ondary temperature modes; therefore, the critical Rayleigh

number of the 6DLM is comparable to that of the 5DLM.

The 5DLM and 6DLM collectively suggest different roles for

small-scale processes (i.e., stabilization vs. destabilization),

consistent with the following statement by Lorenz (1972): “If

the flap of a butterfly’s wings can be instrumental in generat-

ing a tornado, it can equally well be instrumental in prevent-

ing a tornado.” The implications of this and previous work,

as well as future work, are also discussed.

1 Introduction

Fifty years have passed since Lorenz published his break-

through modeling study (Lorenz, 1963) that changed our

view regarding the predictability of weather and climate

(e.g., IPCC, 2007; Pielke, 2008), laying the foundation for

chaos theory (e.g., Gleick, 1987; Anthes, 2011). Since the

degree of nonlinearity is finite in the original Lorenz model

referred to as 3DLM, the impact of increased nonlinearity

on systems’ solutions and/or their stability has been stud-

ied using generalized Lorenz models (LMs) with additional

Fourier modes (e.g., Curry, 1978; Curry et al., 1984; Frances-

chini and Tebaldi, 1985; Howard and Krishnamurti, 1986;

Franceschini et al., 1988; Hermiz et al., 1995; Thiffeault

and Horton, 1996; Musielak et al., 2005; Chen and Price,

2006; Roy and Musielak, 2007a, b, c; Lucarini and Fraedrich,

2009). However, such studies do not provide a definite an-

swer regarding whether or not higher-order LMs lead to more

stable solutions.

Lorenz demonstrated the association of the nonlinearity

with the existence of non-trivial critical points and strange

attractors in the 3DLM. Shen (2014a, denoted as Shen14) re-

cently discussed the importance of nonlinearity in both pro-

ducing new modes and enabling subsequent negative feed-

back to improve solution stability. The feedback loop of the
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3DLM was defined by Shen14 as a pair of downscale and

upscale transfer processes associated with the Jacobian func-

tion (in Eq. 2). The feedback loop has been suggested to sta-

bilize the solution for 1< r < 24.74 within the 3DLM, as

compared to the linearized 3DLM. Extending the nonlinear

feedback loop in a five-dimensional LM (5DLM) can pro-

vide negative nonlinear feedback to produce non-trivial sta-

ble critical points when 1< r < 42.9. The negative nonlinear

feedback represents the collective impact of additional non-

linear terms and dissipative terms introduced by the two ad-

ditional Fourier modes of the 5DLM. In this study (and in the

previous study, Shen14), the two modes are added to improve

the representation of the temperature perturbation, referred

to here as secondary temperature modes. Improved stability

with a higher critical Rayleigh parameter was verified by lin-

earizing the 5DLM with respect to a non-trivial critical point

and then performing a stability analysis over a wide range of

values in parameters (σ , r). The outcome was possible due

to the analytical solutions of the critical points in the 5DLM

(e.g., Shen14). The role of the negative nonlinear feedback

was further verified using the revised 3DLM that parame-

terizes the negative nonlinear feedback to suppress chaotic

responses using a nonlinear eddy dissipation term.

In addition to the negative nonlinear feedback, Shen14

indicated that a conclusion derived from lower-dimensional

LMs may not be applicable in all circumstances in a higher-

dimensional LM. For example, although the butterfly effect

(of the first kind) with dependence of solutions on initial

conditions appears in the 3DLM within the range between

r = 25 and 40, it does not exist in the 5DLM. Therefore, to

examine whether or not small perturbations can alter large-

scale structure (i.e., the butterfly effect of the second kind),

a model containing proper representations of multiscale pro-

cesses and their nonlinear interactions is required. As a re-

sult, it would require improving the degree of nonlinearity to

address the question.

In a pioneering study using the generalized LM with

a large number of Fourier modes, Curry et al. (1984) sug-

gested that chaotic responses disappeared when sufficient

modes were included. Shen14 hypothesized that the system’s

stability in the LMs, with a finite number of modes, can be

improved with additional modes that provide negative non-

linear feedback associated with additional dissipative terms.

However, since new modes can also introduce additional

heating term(s), the competing role of the heating term(s)

with nonlinear terms and/or with dissipative terms deserves

to be examined so that the conditions under which solutions

become more stable or chaotic can be better understood. Re-

sults obtained from work described here and the work of

Shen14 are used to address the following question: for gener-

alized LMs, under which conditions can the increased degree

of nonlinearity improve solution stability?

To achieve the goal outlined above, the 3DLM to 5DLM

was previously extended in Shen14 by including the two sec-

ondary temperature modes. In this study, the 5DLM is ex-

tended to the 6DLM by adding an additional mode. The ad-

ditional mode is included to improve the representation of

the streamfunction (e.g., Eqs. 4 and 5), and is, therefore, re-

ferred to as the secondary streamfunction mode. While the

secondary temperature modes of the 5DLM (as well as the

6DLM) introduce additional nonlinear terms and dissipative

terms, which, in turn, provide negative nonlinear feedback,

the secondary streamfunction mode of the 6DLM introduces

additional nonlinear terms and adds a heating term. The ap-

proach, using incremental changes in the number of Fourier

modes, can help trace their individual and/or collective im-

pact on solution stability. For example, since the 6DLM also

contains the negative nonlinear feedback in association with

secondary temperature modes, it becomes feasible to exam-

ine the role of the additional heating term in the solution’s

stability and its competing impact with the negative nonlin-

ear feedback.

The presented work is organized as follows. We describe

the governing equations in Sect. 2.1 and present the deriva-

tions of the 6DLM in Sect. 2.2. We then discuss the en-

ergy conservation of the 6DLM in the dissipationless limit

in Sect. 2.3, and numerical approaches for integrations of the

LMs and calculations of ensemble Lyapunov exponents in

Sect. 2.4. In Sect. 3.1, we investigate the potential impact

of the additional heating term on the solution’s stability by

performing stability analysis near the trivial critical point.

We also illustrate how the feedback loop can be extended

using the secondary streamfunction mode. In Sect. 3.2, nu-

merical results obtained from the 6DLM are provided and

compared to results obtained from the 5DLM. To examine

the role of the secondary streamfunction mode and to iden-

tify the major nonlinear feedback term, additional numeri-

cal experiments using the 6DLM and simplified 6DLMs are

compared in Sect. 3.3. Then, we discuss the dependence of

the solution’s stability on the Prandtl number (σ ) in Sect. 3.4.

Concluding remarks appear at the end. Mathematical deriva-

tions of the 5DLM and 6DLM are briefly summarized in the

Supplement.

2 The six-dimensional Lorenz model and numerical

methods

2.1 The governing equations

By assuming 2-D (x, z), incompressible and Boussinesq

flow, the following equations were used by Saltzman (1962)

and Lorenz (1963):

∂

∂t
∇

2ψ = − J
(
ψ,∇2ψ

)
+ ν∇4ψ + gα

∂θ

∂x
, (1)

∂θ

∂t
= − J (ψ,θ)+

1T

H

∂ψ

∂x
+ κ∇2θ. (2)

Here ψ is the streamfunction that gives the u=−ψz and

w = ψx , which, respectively, represent the horizontal and
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vertical velocities; θ is the temperature perturbation; and1T

represents the temperature difference at the bottom and top

boundaries. The constants g, α, ν, and κ denote the accel-

eration of gravity, the coefficient of thermal expansion, the

kinematic viscosity, and the thermal conductivity, respec-

tively. The Jacobian of two arbitrary functions is defined as

J (A,B)= (∂A/∂x)(∂B/∂z)−(∂A/∂z)(∂B/∂x). Addition-

ally,

∇
4ψ = ∂/∂x

(
∇

2∂ψ/∂x
)
+ ∂/∂z

(
∇

2∂ψ/∂z
)
.

Based on the above partial differential equations, Lorenz

(1963) introduced a system of three ordinary differential

equations to illustrate the characteristics of chaotic solutions.

This system is a simplified version of the one derived by

Saltzman (1962). For the reader’s convenience, the same

symbols as those in Saltzman (1962) and Lorenz (1963) are

used here.

2.2 The 6-D Lorenz model (6DLM)

To generalize the original Lorenz model, we first use the fol-

lowing six Fourier modes (which are also listed in Table 1 of

Shen14) to derive the 6DLM:

M1 =
√

2sin(lx)sin(mz),M2 =
√

2cos(lx)sin(mz),

M3 = sin(2mz), (3)

M4 =
√

2sin(lx)sin(3mz),M5 =
√

2cos(lx)sin(3mz),

M6 = sin(4mz). (4)

Here l and m are defined as πa/H and π/H , representing

the horizontal and vertical wavenumbers, respectively, and

a is a ratio of the vertical scale of the convection cell to its

horizontal scale, i.e., a = l/m. The term H is the domain

height, and 2H/a represents the domain width. Using these

modes, ψ and θ can be represented as follows:

ψ = C1(XM1+X1M4), (5)

θ = C2 (YM2+Y1M5−ZM3−Z1M6) , (6)

C1 = κ
(1+ a2)

a
, C2 =

1T

π

Rc

Ra

, Rc =
π4

a2
(1+ a2)3,

R−1
a =

νκ

gαH 31T
,

where C1 and C2 are constants, Ra is the Rayleigh number

and Rc is its critical value for the free-slip Rayleigh–Benard

problem. Using Eqs. (5) and (6), solutions within the 6DLM

are represented by the six spatial modes M1 to M6 (Eqs. 3,

4) and their corresponding time-varying amplitudes (X, Y ,

Z, X1, Y1, Z1), respectively. By comparison, Eq. (3) was

used to derived the 3DLM, and Eqs. (3) and (4) without M4

were used to derive the 5DLM. While the 3DLM and 6DLM

(5DLM) have one horizontal wavenumber, they contain two

and four vertical wavenumbers, respectively. In the text be-

low, to facilitate discussions, M1 and M4 are referred to as

primary and secondary streamfunction modes, respectively,

M2 and M3 are referred to as primary temperature modes,

and M5 and M6 are referred to as secondary temperature

modes. Here, the reader should note that an implicit limi-

tation of this approach is that nonlinear interactions among

the selected modes cannot generate (impact) any new (other)

modes that are not pre-selected, suggesting limited (spatial)

scale interactions. While the impact of the secondary tem-

perature modes (i.e., Y1 and Z1) on the solution’s stability

was discussed by Shen14 with the 5DLM, the impact of the

secondary streamfunction mode (i.e., X1), which introduces

a heating term (rX1), is the focus of the 6DLM provided

here.

To transform Eqs. (1) and (2) into the “phase” space, a ma-

jor step is to calculate the nonlinear Jacobin functions. Cal-

culations indicate that J (ψ,∇2ψ) in Eq. (1) does not lead

to any explicit term in the final 6DLM, or the 3DLM or the

5DLM. Here, the Jacobian term of Eq. (2), which is written

as follows, is discussed:

J (ψ,θ)= C1C2(XYJ (M1,M2)−XZJ(M1,M3)

+XY1J (M1,M5)−XZ1J (M1,M6)

+X1YJ (M4,M2)−X1ZJ(M4,M3)

+X1Y1J (M4,M5)−X1Z1J (M4,M6)). (7)

Note that the 3DLM only contains the first two terms on

the right-hand side of Eq. (7), namely XYJ(M1,M2) and

−XZJ(M1,M3), while the 5DLM includes the first four

terms.

After derivations, we obtain the 6DLM with the following

six equations:

dX

dτ
= − σX+ σY, (8)

dY

dτ
= −XZ+X1Z− 2X1Z1+ rX−Y, (9)

dZ

dτ
= XY −XY1−X1Y − bZ, (10)

dX1

dτ
= − doσX1+

σ

do

Y1, (11)

dY1

dτ
= XZ− 2XZ1+ rX1− doY1, (12)

dZ1

dτ
= 2XY1+ 2X1Y − 4bZ1. (13)

Here, τ = κ(1+a2)(π/H)2t (dimensionless time), σ = ν/κ

(the Prandtl number), r = Ra/Rc (the normalized Rayleigh

number, or the heating parameter), b = 4/(1+a2), and do =

(9+ a2)/(1+ a2). After deriving the 6DLM in the fall of

2011, the 6DLM outlined here was compared with the

work by Kennamer (1995); Musielak et al. (2005); Roy and

Musielak (2007a)), who obtained the same 6DLM. A more

detailed analysis regarding how the system conserves energy

in the dissipationless limit, as well as a comparison with the

3DLM and 5DLM, is provided in the following discussion.
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The 3DLM can be obtained from the 6DLM when

terms that involve (X1, Y1, Z1) are neglected. Alternatively,

Eqs. (8)–(10) can be viewed as a 3DLM with the feedback

processes that result from the three additional modes. There-

fore, the 6DLM can be viewed as a coupled system that con-

sists of the 3DLM (Eqs. 8–10) and a forced dissipative sys-

tem with an additional heating term (e.g., Eqs. 11–13). Here,

and in Shen14, unless otherwise stated, the term “feedback”

refers to the nonlinear process that involves the secondary

modes, namely (X1, Y1, and/or Z1). The 5DLM in Shen14

can be also obtained by ignoring the X1 and dX1/dτ in the

6DLM. As a result, the 6DLM can be viewed as a coupled

system that consists of the 5DLM and an additional equation

(i.e., Eq. 11) that introduces nonlinear feedback associated

with an additional heating term (i.e., Eq. 12).

2.3 Energy conservation in the 6-D non-dissipative LM

The domain-averaged kinetic energy (KE), available poten-

tial energy (APE), and potential energy (PE) are defined

(e.g., Treve and Manley, 1982; Thiffeault and Horton, 1996;

Blender and Lucarini, 2013; Shen, 2014a), as follows:

KE=
1

2

2H/a∫
0

H∫
0

(u2
+w2)dzdx, (14)

APE=−
gαH

21T

2H/a∫
0

H∫
0

(θ)2dzdx, (15)

PE=−

2H/a∫
0

H∫
0

gα(zθ)dzdx. (16)

Through straightforward derivations, we obtain the following

equations:

KE=
Co

2
(X2
+ doX

2
1), (17a)

KEp =
Co

2
X2. (17b)

Here Co = π
2κ2

(
1+a2

a

)3

. KEp contains only a portion of the

total KE of the 6DLM from the primary streamfunction mode

X, but represents the total KE in the 5DLM and 3DLM. In

a similar manner, as follows,

APE= −
Co

2

σ

r
(Y 2
+Z2

+Y 2
1 +Z

2
1), (18)

PE= −Coσ(Z+Z1/2). (19)

Equations (17a) and (18) yield the following:

KE+APE=
Co

2

(
X2
+ doX

2
1 −

σ

r

(
Y 2
+Z2

+Y 2
1 +Z

2
1

))
= C3, (20)

while Eqs. (17b) and (19) lead to the following:

KEp+PE= Co

(
X2

2
− σ

(
Z+

Z1

2

))
= C4. (21)

With Eqs. (8)–(13) in the dissipationless limit, the time

derivatives of both Eqs. (20) and (21) are zero, so both C3

and C4 are constants. Therefore, Eqs. (20) and (21) indicate

two energy conservation laws, including the conservation of

the total KE and APE (i.e., Eq. 20). However, it should be

noted that, as follows,

KE+PE= Co

(
X2

2
+ do

X2
1

2
− σ

(
Z+

Z1

2

))
6= constant. (22)

By comparison, the two energy conservation laws of the

5DLM are written as follows:

KE5-D+APE5-D =
Co

2

(
X2
−
σ

r

(
Y 2
+Z2

+Y 2
1 +Z

2
1

))
= C5, (23)

KE5-D+PE5-D = Co

(
X2

2
− σ

(
Z+

Z1

2

))
= C6. (24)

It can been shown that both C5 and C6 are constants. There-

fore, in the 5DLM, in addition to the conservation of the KE

and APE, the KE and PE are also conserved.

2.4 Numerical approaches

Using the fourth-order Runge–Kutta scheme, the original and

higher-order Lorenz models are integrated forward in time.

We vary the value of the heating parameter r but keep other

parameters as constants, including σ = 10, a = 1/
√

2, b =

8/3, do = 19/3, and a minimum value for Rc = 27π4/4. In

Figs. 1, 2, 3 and 6, the initial conditions are given as follows:

(X,Y,Z,X1,Y1,Z1)= (0,1,0,0,0,0). (25)

The dimensionless time interval (4τ ) is 0.0001. The total

number of time steps (N ) is 1 000 000 in Fig. 1 and 500 000

in Figs. 2, 3, and 6, yielding a total dimensionless time (τ )

of 100 and 50, respectively. In Figs. 2 and 6, the solutions of

the 3DLM and 5DLM are rescaled by the analytical solutions

of their critical points (i.e., Eqs. 21 and 19 of Shen14). The

solutions of the 6DLM are rescaled by the critical points of

the 5DLM. In Sect. 3.4, the dependence of solution stability

on the Prandtl number (σ ) is discussed with selected values

of σ .

To quantitatively evaluate whether or not the system is

chaotic, we calculate the Lyapunov exponent (LE), a mea-

sure of the average separation speed of nearby trajectories on

the critical point (e.g., Benettin et al., 1980; Froyland and

Alfsen, 1984; Wolf et al., 1985; Nese, 1989; Zeng et al.,

1991; Eckhardt and Yao, 1993; Christiansen and Rugh, 1997;

Kazantsev, 1999; Sprott, 1997, 2003; Ding and Li, 2007; Li
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Figure 1. Time evolution of energy conservation laws from the 5D-

NLM and 6D-NLM. (KE+PE) and (KE+APE) are displayed for

the 5D-NLM, while (KEp+PE) and (KE+APE) are shown for the

6D-NLM. (a) and (b) are for r = 25 and r = 45, respectively. All

fields are normalized using the constant Co

(
= π2κ2

(
1+a2

a

)3
)

,

and each of the above lines is shifted to the summation of the cor-

responding initial value and a constant value (e.g., 0.06 in the green

line).

and Ding, 2011). In Shen14, the two methods implemented

and tested are the trajectory separation (TS) method (e.g.,

Sprott, 1997, 2003); and the Gram–Schmidt reorthonormal-

ization (GSR) procedure (e.g., Wolf et al., 1985; Christiansen

and Rugh, 1997). Here, a brief summary of how LEs are cal-

culated using the two methods is provided. Using given ini-

tial conditions (ICs) and a set of parameters in the LMs, the

TS scheme calculates the largest LE, and the GSR scheme

produces “n” LEs; here “n” is the dimension of the 5-D

or 6-D LM. Calculations are conducted with 4τ = 0.0001

andN = 10 000 000, yielding τ = 1000. To minimize the de-

pendence on the ICs, 10 000 ensemble (En= 10 000) runs

with the same model configurations but different ICs are

performed, and an ensemble averaged LE (eLE) is obtained

from the average of the 10 000 LEs. A large N and En are

used to understand the long-term average behavior of the so-

lutions of the LMs and simplified LMs where some terms

are ignored. While eLEs calculations using the above two

methods were previously discussed and compared in Shen14,

here, a calculation of the Kaplan–Yorke fractal dimension

(Kaplan and Yorke, 1979) using the (three) leading eLEs

from the GSR method is provided in Appendix A as an addi-

tional verification. Unless stated otherwise in the main text,

the largest ensemble-averaged LE (eLE) for a given r is ob-

tained from the TS method.

To examine the collective or individual impact of the non-

linear feedback terms and to identify the major feedback

that can improve numerical predictability in the 5-D and 6-D

LMs, we perform additional runs using the 6DLM with addi-

tional simplifications. The experiments, as listed in Table 1,

include the following: (1) case 6DLMS1 where three nonlin-

ear terms involving X1 are neglected and only one feedback

term (XY1) is retained in Eqs. (9) and (10), (2) case 6DLMS2

where onlyXY1 is ignored in Eq. (10), and (3) case 6DLMS3

where rX1 is removed from Eq. (12). Results from these sim-

plified 6DLMs are presented in Sect. 3.3.

3 Discussion

In the following sections, we discuss the impact of additional

modes on solution stability. In Sect. 3.1, we illustrate the po-

tential role of the M4 mode by performing linear stability

analysis at the trivial critical point. In Sects. 3.2 and 3.3, we

present and compare numerical results from the 6DLM with

and without simplifications to identify the major feedback

process. The dependence of solution stability on the Prandtl

number (σ ) is discussed in Sect. 3.4.

3.1 The impact of M4 on linear stability

In this section, we first discuss the selection of M4 and then

its impact. As indicated in Shen14 and discussed in the Sup-

plement, the inclusion of M5 and M6 modes is based on the

analysis of the Jacobian term, J (ψ,θ), and can improve the

representations of the temperature perturbation and the non-

linear advection of temperature. The appearance of ∂M5/∂x

associated with the linear term ∂θ/∂x of Eq. (1) requires the

inclusion of an M4 mode and the ∂M4/∂x associated with

www.nonlin-processes-geophys.net/22/749/2015/ Nonlin. Processes Geophys., 22, 749–764, 2015
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Table 1. A list of numerical experiments for different Lorenz models. The column “Modifications” indicates additional changes in the

“Equations”. The rc and r l
c are determined based on the eLE analyses and the linear stability analysis, respectively. Solutions in “Figures” are

rescaled using the factors listed in the “Scaling factors”. ∗ For the 3DLM, the ensemble averaged LE is 1.2×10−2 at r = 23.7, and becomes

0.26 at r = 24. The 5-D and 6-D non-dissipative Lorenz models (5D-NLM and 6D-NLM) are used to examine the energy conservation

properties.

Case IDs Equations Modifications Figures rc r l
c Scaling factors

3DLM Eqs. (15)–(17) of Shen14 N/A 2 23.7∗ 24.74 Eq. (21) of Shen14

5DLM Eqs. (10)–(14) of Shen14 N/A 2–5, 7 42.9 45.94 Eq. (19) of Shen14

6DLM Eqs. (8)–(13) N/A 2–7 41.1 N/A Same

6DLMS1 Eqs. (8)–(13) Ignoring terms that involve X1 in Eqs. (9) and (10) 5, 6 42.3 N/A Same

6DLMS2 Eqs. (8)–(13) Ignoring the term −XY1 in Eq. (10) 5, 6 23.9 N/A Same

6DLMS3 Eqs. (8)–(13) Ignoring the term rX1 in Eq. (12) 5, 6 42.1 N/A Same

5D-NLM Eqs. (10)–(14) of Shen14 Ignoring dissipative terms 1 N/A N/A N/A

6D-NLM Eqs. (8)–(13) Ignoring dissipative terms 1 N/A N/A N/A

4T ∂ψ/∂x of Eq. (2) provides feedback to the M5 mode (in

Table 1 of Shen14). The M4 mode shares the same horizon-

tal and vertical wavenumbers as the M5, but has a different

phase (i.e., sin(lx) vs. cos(lx) in Eq. 4). Alternatively, via the

∂θ/∂x and 4T ∂ψ/∂x, the M4 and M5 modes are linked as

follows:

dX1

dτ
∝−doσX1+

σ

do

Y1, (26)

dY1

dτ
∝ rX1− doY1, (27)

which can be derived by linearizing Eqs. (11) and (12) at the

trivial critical point. The linearized equations are decoupled

with the rest of the equations on the 6DLM, suggesting that

the heating term (rX1) can impact other modes as well as

the stability of the nonlinear 6DLM via nonlinear feedback,

as discussed below. The above equations are reduced to the

following:

d2Y1

dτ 2
+ do(σ + 1)

dY1

dτ
−
σ

do

(
r − d3

o

)
= 0. (28)

By assuming the solution Y1 ∝ exp(βτ), we obtain the fol-

lowing two roots for β:

β±(r)=

−do(σ + 1)±

√
d2

o (σ + 1)2+ 4σ
(
r − d3

o

)
/do

2
. (29)

Here, β+ (β−) represents the larger (smaller) root. An unsta-

ble normal mode with β+ > 0 appears when r > d3
o . When

do = 1, the result in Eq. (29) can be applied to the linearized

3DLM. As do = 19/3 and r < d3
o (∼ 254) in this study, both

β+ and β− are negative and ∂β/∂r is positive. The focus is

β+ because the corresponding mode dominates the solution

as a result of a smaller decay rate as compared to β−. β+
has a minimum (i.e., the largest decay rate) as r = 0, and in-

creases as r increases (up to 254), leading to a decreasing

decay rate. In the limit of r = 0 and σ ≥ 1, the minima of

Eq. (29) can be written as follows:

β+(r = 0)=−do and β−(r = 0)=−doσ. (30)

The β+ =−do provides the same decay rate as the one de-

rived directly from Eq. (27) with r = 0 (i.e., the removal of

rX1). The simple analysis indicates that the inclusion ofM4,

as a result of β+ < 0 and |β+(r 6= 0)|< |β+(r = 0)|, can

lead to a solution component with a smaller decay rate. In

other words, the inclusion of rX1 effectively reduces the dis-

sipative impact of−doY1 in Eq. (27). Here, the reader should

note that the relative impact of r with respect to σ can be esti-

mated using the ratio between the first and second arguments

of the radical in Eq. (29), written as 4σ(r−d3
o )/(σ+1)2/d3

o .

The result suggests that rX1 becomes less important when

a larger σ is used.

The discussions provided above illustrate how the sec-

ondary streamfunction mode (M4) may impact the growth

rate of Y1 via the linear heating term (rX1). Additionally,M4

can also provide its nonlinear feedback by extending the non-

linear feedback loop of the 5DLM (as well as the 3DLM), as

follows (also see Table 2 of Shen 2014a):

J (M4,M2)= 2mlM6−mlM3, (31)

J (M4,M3)= mlM2, (32)

J (M4,M6)= − 2mlM2. (33)

While Eqs. (31) and (32) form a feedback loop with M2→

M3→M2, Eqs. (31) and (33) enable another feedback loop

with M2→M6→M2. Equations (32) and (33) only con-

tain the vertical advection of temperature due to ∂M3/∂x =

∂M6/∂x = 0. The two equations suggest that both M3 and

M6 can provide upscaling feedback to M2 through their in-

teraction with M4, leading to two terms in Eq. (9), i.e.,

dY/dτ ∝X1Z−2X1Z1. When Z1 is close to Z/2, their col-

lective impact may become insignificant, X1(Z− 2Z1)∼ 0,

as compared to the other terms in Eq. (9). Since the for-

mer criterion can be met near the stable critical points of

the 5DLM (e.g., Eq. 20b of Shen14) and since the 6DLM

shares some similarities with the 5DLM, X1Z and −2X1Z1

are neglected in the 6DLMS1, whose results are discussed in

Sect. 3.3. In the next section, we first compare the numerical

results of the 5DLM and 6DLM.
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3.2 Numerical results of the 6DLM

In this section, we discuss the numerical results of the 6DLM

beginning with energy conservation laws in the dissipation-

less limit. The non-dissipative version of the 6DLM (5DLM)

is referred to as the 6D-NLM (5D-NLM). Figure 1 pro-

vides the time evolution of the total domain-averaged ki-

netic energy and available potential energy (KE+APE) for

both the 6D-NLM (blue) and 5D-NLM (red). While the

total domain-averaged kinetic energy and potential energy

(KE+PE) is shown in pink for the 5D-NLM, the kinetic

energy of the primary streamfunction mode and the poten-

tial energy (KEp+PE) is shown in green for the 6D-NLM.

Using the initial conditions in Eq. (25), the initial values of

the normalized KE+APE for the 6D-NLM (Eq. 20) and

the 5D-NLM (Eq. 23) are given as C3/Co and C5/Co, re-

spectively, and equal to −σ/2r . C3/Co (or C5/Co) is −0.2

for r = 25 and −0.11 for r = 45. The initial values of the

normalized KEp+PE for the 6D-NLM (Eq. 21) and the

KE+PE for the 5D-NLM (Eq. 24) are given as C4/Co

and C6/Co, respectively, and both are zero. To effectively

illustrate the conservation properties of the four quantities

above, the time evolution of their deviations from the cor-

responding initial values produce four lines when plotted.

Each of the lines may be shifted by a constant. For exam-

ple, while the red line in Fig. 1 represents the time evolu-

tion of the deviation for KE+APE in the 5D-NLM, (i.e.,

KE5-D(τ )+APE5-D(τ )−KE5-D(0)−APE5-D(0)), the blue

line with a constant shift of 0.02 represents the time evo-

lution of the deviation for KE+PE in the 6D-NLM (i.e.,

KE(τ )+APE(τ )−KE(0)−APE(0)+0.02). As indicated in

Fig. 1, each of the four quantities is conservative.

Next, we compare the normalized solutions of (Y , Z) in

the 3DLM, 5DLM, and 6DLM with two different values

of r . Normalization scales are defined by the critical points

listed in Table 1. Figure 2a and b display the solutions from

the 3DLM and 6DLM with r = 35. Although the critical

value (rc) for the onset of chaos is rc = 24.74 in the 3DLM

(Lorenz, 1963), a larger value is chosen for comparison with

the 6DLM. The solution of the 3DLM never reaches a steady

state but oscillates irregularly with time surrounding the non-

trivial critical points. In contrast, as indicated by the con-

verged trajectory that approaches a critical point that is close

to (Y/Yc, Z/Zc)= (−1,1), the 6DLM yields a steady-state

solution. Note that the normalization scales, Yc and Zc, are

the critical points of the 5DLM, because it is difficult to ob-

tain the analytical solution of the critical points in the 6DLM

and the former and latter share similarities as discussed later.

The 6DLM continues to generate steady-state solutions un-

til r is beyond 41.1 (as discussed in Fig. 4). With an r value

of 42.0, the 6DLM leads to a chaotic solution with a “but-

terfly” pattern in Y–Z space (Fig. 2d), while the 5DLM still

produces a stable solution (Fig. 2c).

In the following, we discuss the time evolution of the solu-

tions for the 5DLM and 6DLM to examine the impact of the

secondary modes on solution’s stability and to identify the

major feedback associated with these modes. First, we ana-

lyze the dZ/dτ (e.g., Eq. (10) for the 6DLM and Eq. (12) of

Shen14 for the 5DLM) for the cases using r = 35 that have

steady-state solutions. Figure 3 indicates that all of the terms

with the exception of X1Y , in the dZ/dτ of the 6DLM, yield

comparable results to their counterparts in the 5DLM, indi-

cating that XY1 also plays an important role in stabilizing

the solution of the 6DLM as compared to the 5DLM. While

the negative feedback by XY1 was verified by parameteriz-

ing its impact as a nonlinear eddy dissipation term into the

3DLM in Shen14, further verification using the 6DLM is pro-

vided in the following section. Due to a small value of X1,

the X1Y is small as compared to other terms. A small value

of X1 could also be inferred from the steady-state solution to

Eq. (11), giving X1 = Y1/d
2
� Y1 as do = 19/3. Addition-

ally, the time evolution of theXY suggests that a steady state

in the 5DLM is reached earlier than it is in the 6DLM, con-

sistent with the decay rate analysis in Sect. 3.1.

Figure 4 provides the analysis, used to determine the crit-

ical value of r for the onset of chaos for both the 5DLM and

6DLM, of the eLEs as a function of the normalized Rayleigh

parameter r . Both models produce similar distributions of the

eLEs for 35≤ r ≤ 50, with the following features: (1) within

the stable region (as eLEs< 0), the magnitude of the eLEs

is relatively smaller in the 6DLM; (2) the 6DLM requires

a slightly smaller r (rc ∼ 41.1) for the onset of chaos than

the 5DLM (rc ∼ 42.9); and (3) in fully chaotic regions (e.g.,

r > 44), the eLEs of the 5DLM and 6DLM are in good agree-

ment, with very small differences. The first two results are

consistent with the stability analysis provided in Sect. 3.1,

suggesting that inclusion of the M4 mode in the 6DLM may

reduce the dissipative impact associated with the M5 mode.

3.3 Numerical results of the simplified 6DLMs

In this section, we analyze the eLEs of the 6DLM with or

without additional approximations to identify the major feed-

back term and the impact of M4 in the 6DLM. While the

6DLM has four nonlinear feedback terms (X1Z and−2X1Z1

in Eq. 9, and −XY1 and −X1Y in Eq. 10), the 5DLM only

has one term, −XY1. Nonlinear feedback terms are defined

as the nonlinear terms involving the secondary modes (X1,

Y1, and Z1). Therefore, comparable eLEs between these two

LMs suggest that−XY1 may play the most significant role in

providing feedback for stabilizing solutions in the 6DLM. To

verify this hypothesis, additional experiments are performed

with the following simplified 6DLMs: 6DLMS1, 6DLMS2

and 6DLMS3, as introduced in Sect. 2.4 and listed in Table 1.

While the 6DLMS1 case retains only one nonlinear feedback

term, XY1, the 6DLMS2 case only neglects this term. By

comparison, the 6DLMS3 case is designed to examine the

role of the linear heating term (rX1) in Eq. (12). The corre-

sponding eLEs are shown in Fig. 5. The eLEs of the 6DLMS2

resemble those of the 3DLM (Fig. 5a) with the exception of
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Figure 2. (Y , Z) plots in the 3DLM (a) and 6DLM (b) with r = 35, and 5DLM (c) and 6DLM (d) with r = 42. Lorenz strange attractors

appear in (a) and (d). All of the solutions are normalized by the corresponding critical points, namely, Eq. (21) of Shen14 for the 3DLM and

Eq. (19) of Shen14 for the 5DLM and 6DLM.

Figure 3. Forcing terms of dZ/dτ with r = 35, which are from Eq. (12) for the 5DLM of Shen (2014a) (a) and Eq. (10) for the 6DLM (b),

respectively. The black and orange lines represent XY and bZ, respectively, while the blue and red lines represent XY1 and 5X1Y , respec-

tively.
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Figure 4. The largest ensemble-averaged Lyapunov exponents

(eLEs) as a function of the forcing parameter r in different LMs.

The eLEs with 1r = 0.1 for the 5DLM (black) and 6DLM (blue).

The appearance of chaotic solutions is indicated by positive eLEs.

the window regions, indirectly indicating the importance of

XY1 in stabilizing the solutions in the 6DLM. With the ex-

ception of the transition regions from eLEs< 0 to eLEs> 0

over a small range of r (i.e., r ∼ 41–43), the eLEs of the

6DLMS1 and 6DLMS3 are close to those in the 6DLM and

5DLM. The rc of these two cases are determined to be 42.3

and 42.1, respectively, which are slightly larger (smaller)

than rc = 41.1 (rc = 42.9) for the 6DLM (5DLM), as shown

in Fig. 5b. In addition, the magnitudes of the LEs in the sta-

ble regions are determined to be relatively larger (smaller)

than those in the 6DLM (5DLM). Since the 6DLMS1 ig-

nores the nonlinear feedback terms associated with the X1

and since the 6DLMS3 neglects the rX1 term, the features of

the 6DLMS1 and 6DLMS3, as compared to the 6DLM, also

indicate that the impact of the M4 may slightly destabilize

solutions.

The eLEs represent the averaged behavior of the model’s

solutions over a very large timescale, so N = 10 000 000 and

T =N4t = 1000 (e.g., the T in Eq. (23) of Shen14 should

approach infinity) are used. Since some of the terms in the

simplified LMs (e.g., 6DLMS1-3) are ignored, it is impor-

tant to check the time evolution of the solutions on a finite

timescale in order to understand whether and how the so-

lutions approach a stable critical point, or oscillate rapidly

between (unstable) non-trivial critical points. To this end,

we examine the r time diagram of the normalized solutions

in Fig. 6, which displays the primary mode, −Y/Yc, and

secondary mode, −Y1/Y1c, from the 6DLM, 6DLMS1, and

6DLMS3. Here, Yc and Y1c are the analytical solutions of the

critical points from the 5DLM. Using this approach, the de-

viation of the normalized solutions from 1 (i.e., −Y/Yc− 1)

indicates the impact of the M4 mode that is missing in the

5DLM. In Fig. 6, the sharp gradient of the solutions with

dense contour lines near the constant value of r = 43 (in

black) roughly indicates the critical value of r for the onset
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Figure 5. Same as Fig. 4 except for (a) the 3DLM (in pink) and the

6DLMS2 (in orange), and (b) the 6DLMS1 (in red) and 6DLMS3

(in green).

of chaos, consistent with the analysis of the eLEs in Fig. 5

(see Table 1). In stable regions, the primary mode, −Y/Yc,

evolves with time and comes within 1± 0.01 in each of the

three cases (Fig. 6a, c, e). For the 6DLMS1 that only in-

cludes one nonlinear feedback term (XY1), the values of the

secondary mode, −Y1/Y1c, in stable regions are also within

1± 0.01 (Fig. 6d). By comparison, the normalized solutions

(−Y1/Y1c) for the 6DLM and 6DLMS3 are within 1 and 0.9

in the steady state, suggesting a deviation within 10 % from

the corresponding critical point of the 5DLM. If we view the

stable solutions of the 5DLM as the results of the control run,

the 6DLM provides approximate steady-state solutions that

have derivations of only around 1 % in Y and approximately

10 % in Y1. The above results indicate that the nonlinear

terms associated with the X1 (i.e., M4 mode) may produce

larger relative deviations in the secondary mode Y1 (a high-

wavenumber mode) than in the primary mode Y (a low wave-

number mode).

By comparing the 3DLM and 5DLM, Shen14 suggested

that the stability of solutions in the 3DLM can be im-
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Figure 6. The r-time diagram of numerical solutions from the 6DLM (a, b), 6DLMS1 (c, d), and 6DLMS3 (e, f). r ranges from 25 to 50

with 1r = 0.5. (a, c, e) show −Y/Yc, and (b, d, f) show −Y1/Y1c. Yc and Y1c are the critical points of the 5DLM as defined in Eq. (19) of

Shen14. The black line indicates a constant value of r = 43.

proved by the negative nonlinear feedback through the term

(−XY1), enabled by the secondary temperature modes (Y1

and Z1) in the 5DLM. The result motivated an examina-

tion of whether or not a higher-dimensional model is more

stable or less chaotic (i.e., a larger critical value of r) than

a lower-dimensional model. In this study, the comparison

of the 5DLM and 6DLM indicates that the additional mode

(M4) in the 6DLM does not help increase but slightly de-

creases the critical value of r for the onset of chaos. In other

words, the inclusion of M4 provides positive feedback that

destabilizes the solutions through the heating term (e.g., rX1

in Eq. 12) and/or through its nonlinear interaction with other

modes. Based on the results obtained from the 5DLM and

6DLM, we have demonstrated the roles of secondary modes

(i.e., small-scale processes) in stabilizing and destabilizing

system solutions. In addition, the collective impact of these

secondary modes on the improvement of solution stability

has been examined. Since the aforementioned results are ob-

tained from the LMs with a fixed value of σ = 10, the depen-

dence of the stability in the 6DLM on various values of σ is

discussed in the next section.
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Figure 7. The rc of the 6DLM as a function of σ . The rc, shown by

blue multiplication signs (X), is determined by the eLEs of the non-

linear 6DLM. The pink and black lines indicate a constant contour

of Re(λ)= 0 for the linear 3DLM and 5DLM, respectively, indicat-

ing the corresponding rc, based on a linear stability analysis. Solid

circles with the same color scheme indicate a rc, determined by the

eLE analysis with 1r = 0.1 in the corresponding nonlinear LM.

3.4 Dependence of stability on σ

Previous sections discussed the stability problem only by

varying the heating parameter, r . Here, we examine the de-

pendence of solution stability on the parameter σ , and ad-

dress the question of whether or not the 6DLM still requires

a smaller (larger) rc for the onset of chaos than the 5DLM

(3DLM) when different values of σ are used. To efficiently

achieve the goal, we conduct the eLE analysis for the 6DLM

using selected values of σ , and compare it with that from the

5DLM. The dependence of the 5DLM’s stability on σ was

previously examined by Shen14 by performing both linear

stability and eLE analyses.

For comparisons, the results obtained from the stability

analysis of the 5DLM and 3DLM in Shen14 are briefly sum-

marized as follows: in Fig. 7, pink and black lines indicate

the contour lines of the Re(λ)= 0 in the (σ , r) space for

the linearized 3DLM and 5DLM, respectively. Since λ is the

largest eigenvalue, each line describes the critical value r l
c as

a function of σ , where the superscript “l” of r l
c indicates the

local (or linear) analysis. Following each of the contour lines

in the direction of increasing σ , its right (or left) hand side

contains areas with negative (or positive) values of Re(λ),

suggesting stable (or unstable) solutions. Therefore, unsta-

ble solutions (Re(λ) > 0) appear as r l
c < r . Solid circles with

the same color scheme indicate the rc determined using the

eLE analysis with selected values of σ : σ = 10, 13, 16, 19,

22 and 25. Given a σ , rc is, in general, smaller than r l
c in

both the 3DLM and 5DLM, as previously documented (see

Shen14 for additional details).

The rc of the 6DLM, with the eLE analysis, is shown

in Fig. 7 with blue multiplication signs. For all of the se-

lected cases, the critical value rc in the 6DLM is larger than

that in the 3DLM, suggesting that over the range between

σ = 10∼ 25, the 6DLM requires a larger r for the onset of

chaos than the 3DLM. By comparison, in each of the selected

cases with σ = 10, 13, 16, and 19, the critical value (rc) in

the 6DLM is (slightly) smaller than the one in the 5DLM.

As a result, the 6DLM is less stable than the 5DLM as

10≤ r < 22. However, for the case with σ = 22 (or σ = 25),

the rc of the 6DLM is comparable (or slightly larger), as com-

pared to that of the 5DLM. The results may indicate a differ-

ent role for the M4 mode between σ < 22 and σ > 22, or

suggest the importance of increasing the ensemble members

and/or increasing the coverage of the initial conditions for

the calculations of the eLEs, all of which are subject to fu-

ture study.

4 Concluding remarks

Five- and six-dimensional Lorenz models (5DLM and

6DLM) were derived here and in Shen14 to examine the im-

pact of additional modes on solution’s stability. The 5DLM

includes two new Fourier modes (i.e., the secondary temper-

ature modes M5 and M6) that introduce the additional non-

linear and dissipative terms. The 6DLM is a super set of the

5DLM, and contains one more Fourier mode (i.e., the sec-

ondary streamfunction mode M4) that introduces additional

nonlinear terms and adds a heating term. The individual and

collective impacts of these terms on solution stability were

investigated. The 5DLM and 6DLM have comparable criti-

cal Rayleigh parameters for the onset of the chaos, and the

parameters are larger than that of the 3DLM. Based on the

calculations of the ensemble-averaged Lyapunov exponents

(eLEs), the critical value rc for the 6DLM (5DLM) with

σ = 10 is approximately 41.1 (42.9). Therefore, while the so-

lution of the 3DLM becomes chaotic when r ranges from 25

to 40, the 6DLM (5DLM) still produces stable steady-state

solutions, suggesting that predictability can be improved by

the increased degree of nonlinearity.

A quantitative comparison of the eLEs from the gener-

alized LMs with or without additional simplifications sug-

gests the following: (1) the negative nonlinear feedback, first

identified in the 5DLM and represented by XY1 in both

the 5DLM and 6DLM, plays a dominant role in providing

feedback for stabilizing the solution in the 6DLM, and (2)

the additional heating term (rX1) associated with the M4

mode may destabilize the solution in the 6DLM, which has

a smaller rc as compared to the 5DLM. The stability analysis

provided in Sect. 3.1 indicates that the heating term rX1 may

effectively reduce the dissipative effect associated with the
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M5 mode, and, in turn, provides effective “positive” feedback

through the nonlinear feedback loop; (3) as a result of much

smaller values in the X1, the induced destabilization (by the

additional heating term) is much smaller than the induced

stabilization (by the negative nonlinear feedback term). Ad-

ditionally, two nonlinear feedback terms associated with M4

nearly cancel one another (e.g., Eqs. 32 and 33). Therefore,

the rc of the 6DLM is only slightly smaller than that of the

5DLM. The 5DLM and 6DLM collectively illustrate the dif-

ferent roles of various high-wavenumber modes in stablizing

or destabilizing a system’s solutions. Additional analyses of

mathematical derivations and numerical results are summa-

rized below.

As compared to the 3-D and 5-D LMs in the dissipation-

less limit, the 6-D non-dissipative LM also poses two en-

ergy conservation relations. One states the conservation of

the total domain-averaged kinetic energy (KE) and available

potential energy (APE), enabling the transfer between KE

and APE. The result is consistent with the result in the 3-D

and 5-D non-dissipative LMs. In contrast, the additional con-

servation law only provides the conservation of the domain-

averaged kinetic energy associated with the primary stream-

function mode (KEp) and the total domain-averaged potential

energy (PE), instead of the total KE and PE, as compared to

the 3DLM and 5DLM. The two conservations do pose con-

straints on all six modes of the 6DLM. However, the poten-

tial issues (e.g., whether inconsistent forcing may exist) are

beyond the scope of the present study.

The competing impact of the nonlinearities and the dissi-

pation and heating terms can be illustrated using Eq. (10) of

the 6DLM, as follows:

dZ

dτ
=XY −XY1−X1Y − bZ.

The first nonlinear term (XY ) and the linear term (bZ) can

act as a forcing and dissipative term, respectively, in the 3-

D, 5-D, and 6-D LMs. The second and third nonlinear terms

(XY1 andX1Y ) are introduced as additional dissipative terms

by the new modes.X1Y is much smaller than the other terms,

and XY1 can help reach a balance with XY and bZ to stabi-

lize the solution. The negative nonlinear feedback by XY1

was first illustrated by Shen14 for the 5DLM. However, the

feedback by XY1 in the 6DLM may be (slightly) different

from that in the 5DLM. Specifically, whileXY1 of the 5DLM

includes the feedback associated with additional nonlinear

and dissipative terms, XY1 of the 6DLM includes the feed-

back from the additional nonlinear and heating terms such as

rX1.

The above results provide different impacts associated

with various secondary modes, consistent with Lorenz’s

statement in 1972, as follows: “If the flap of a butterfly’s

wings can be instrumental in generating a tornado, it can

equally well be instrumental in preventing a tornado.” The

quote suggests the appearance of both positive and nega-

tive feedbacks (i.e., stabilization and destabilization) in as-

sociation with various “small-scale” processes. Since mode

truncation is unavoidable in finite-resolution models, the an-

swer to the question of whether or not the feedback by new

modes is positive or negative should be made in the proper

context. The approach outlined here may help us understand

why some generalized LMs have a larger rc while others

have a smaller rc as compared to the 3DLM. For exam-

ple, among the five different generalized LMs in Tables 1

and 2 of Roy and Musielak (2007c), the two LMs that in-

clude M5 and M6 have a rc of ∼ 40–42, comparable to the

rc in the 5DLM (6DLM) outlined here. The 22(1,3) and

22(0,4) modes in Roy and Musielak (2007c) are the same

as the M5 and M6 modes in this study. In addition, the 14-D

LM, with a comparable rc (rc ∼ 43.48) described by Curry

(1978), also includes these two modes22(1,3) and22(0,4),

and does not have a vertical wavenumber higher than that

of 22(0,4). In contrast, the 5-D LM of Roy and Musielak

(2007b), which has a smaller rc (rc ∼ 22.5), does include an

additional heating term, although the two additional modes

are different from the secondary modes of the 5DLM and

6DLM in this study. Although preliminary analyses seem

encouraging, however, detailed comparisons with other gen-

eralized LMs (e.g., Howard and Krishnamurti, 1986; Her-

miz et al., 1995; Thiffeault and Horton, 1996) are still re-

quired. In addition, the further extension of the nonlinear

feedback loop is being studied with M7−M9 modes, here

M7 =
√

2sin(lx)sin(5mz), M8 =
√

2cos(lx)sin(5mz), and

M9 = sin(6mz). Preliminary results indicates that a larger

rc is required for the onset of chaos (e.g., rc=116.9 for the

7DLM withM8 andM9 modes). Using a 3-D non-dissipative

Lorenz model, which is shown to be a conservative system,

we discussed the collective and competing impact of the non-

linear feedback loop and heating term on the energy cycle

with four different regimes (e.g., Shen, 2014b). We will fur-

ther analyze the energy cycle in the higher-order dissipative

or non-dissipative Lorenz models using the same approach

and compare the results with those using a different approach

(e.g., Pelino et al., 2014).

The 5DLM and 6DLM share some similarities regard-

ing the system’s stability, but the 6DLM has one additional

model. To further our understanding of the dynamics of

chaos, it is required to address whether and where additional

critical points may appear and impact solution’s stability in

the 6DLM. Due to increasing difficulties in obtaining the an-

alytical solutions of the critical points for the 6DLM, it be-

comes more challenging to perform an analysis near the crit-

ical points. In addition to the analysis for examining the com-

peting impact between the additional dissipative and heating

terms, the dependence of solution’s stability on the timescale

(i.e., duration) of the “forcing” terms deserves additional at-

tention. Results obtained in this study indicate eLE depen-

dence on the number of modes (i.e., different resolutions) and

resolved processes (i.e., dissipative terms or heating term).

To improve our confidence in the model’s long-term climate

projections using high-resolution global weather or climate
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models (Shen et al., 2006, 2012, 2013), it is important to un-

derstand whether and how the long-term stability (eLE) in the

global models may be influenced by the change in a model’s

grid spacing as well as the resolved “forcing” associated with

different physics parameterizations. Achieving this goal re-

quires the extension or revision of the TS method for eLE

calculations in the global models. Among a variety of nu-

merical methods that are for the calculations of LEs, the TS

method does not require the variational equation, which is

often difficult to obtain as a result of complicated nonlinear-

ity in physics parameterizations and/or other model compo-

nents. Therefore, the TS method, which has been tested with

revised 3DLMs that contain complicated nonlinear terms to

parameterize the impact of negative nonlinear feedback (e.g.,

Shen, 2015), will be implemented in our global model to ex-

amine the impact of the model’s changes (e.g., grid spacing)

on the solution’s stability.

www.nonlin-processes-geophys.net/22/749/2015/ Nonlin. Processes Geophys., 22, 749–764, 2015
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Appendix A: Fractal dimension of the 6DLM

Various methods are available for calculating fractal dimen-

sions. There are several mathematical definitions of differ-

ent types of fractal dimension (Grassberger and Procaccia,

1983; Nese et al., 1987; Ruelle, 1989; Zeng et al., 1992).

In this study, we only discuss the method for calculating

the so-called Kaplan–Yorke dimension (Dky), which requires

the calculation of Lyapunov exponents (LEs) and thus can

be used for the verification of LE calculation. The Kaplan–

Yorke dimension is defined as follows (Kaplan and Yorke,

1979; Nese et al., 1987):

Dky =K +

∑K
i=1LEi

|LEK+1|
, (A1)

where LEi is the ith Lyapunov exponent, and K(≤ n) is

the largest integer for which
∑K
i=1LEi ≥ 0. Dky = 0 as

LE1 < 0 and Dky = n as
∑n
i=1LEi > 0. In this study, “n”

ensemble-averaged Lyapunov exponents (eLEs), which are

produced using the GSR method (e.g., Shen14), are used

to estimate the corresponding Dky. The summation of all

eLEs is provided in Fig. A1a, where −13.667, −30.667,

and −94 are the values for the 3DLM, 5DLM and 6DLM,

respectively, and are consistent with the stability analysis.

For example, in the 6DLM, the summation of all eLEs

should be equal to −(σ + 1+ b+ doσ + do+ 4b). The three

leading eLEs for the 3DLM, 5DLM and 6DLM are pro-

vided in Fig. A1b. The corresponding fractal dimension

obtained using the eLEs is provided in Fig. A2. For r =

28, the leading eLEs of the 3DLM are (0.892743× 10+0,

−0.701148× 10−3, −0.145587× 10+2), which results in

Dky = 2.06127208. The value is very close to the value of

2.063 documented in Nese et al. (1987, p. 1957) and the value

of 2.062 reported by Sprott (http://sprott.physics.wisc.edu/

chaos/lorenzle.htm). Here, the reader should note that the

second eLE is very small but not exactly equal to zero, in-

dicating the impact of the 10 000 different initial conditions

and/or the “finite” integration time (T = 1000) in this study.
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Figure A1. The summation of all ensemble-averaged Lyapunov

exponents (eLEs) in the LMs (a) and three leading ensemble-

averaged Lyapunov exponents (eLEs) as a function of the normal-

ized Rayleigh number (r) (b). The pink, black, and blue lines indi-

cate the eLEs for the 3-D, 5-D and 6-D LMs, respectively. The solid,

dotted, and dashed lines display the first, second and third eLEs, re-

spectively. In (a), the pink, black, and blue lines are shifted with

a constant value of 13.667, 30.667+ 0.02 and 94.0+ 0.04, respec-

tively. To save computational resources, the eLEs of the 5-D and

6-D LMs are calculated over a shorter range of values for r (i.e.,

35< r < 50).
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and 6-D LMs as a function of the normalized Rayleigh number (r).
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The Supplement related to this article is available online

at doi:10.5194/npg-22-749-2015-supplement.
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