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1 Introduction

This report, which documents the mathematical analysis on the extensions of the nonlinear

feedback loop in the 5DLM and 6DLM as well as higher-dimensional Lorenz models, is

provided as supplementary materials to the manuscript entitled “ Nonlinear feedback in the

six-dimensional Lorenz model: impact of an additional heating term. by Shen (2015).” In

the following, we briefly introduce the three-dimensional (3D) Lorenz model (3DLM, Lorenz,

1963) and its Fourier modes, and identify the nonlinear feedback loop of the 3DLM by

analyzing the nonlinear Jacobian term J(ψ,θ). We then discuss how the analysis of J(ψ,θ)

can help select new modes to extend the nonlinear feedback loop in higher-dimensional LMs.

Our approach, using incremental changes in the number of Fourier modes, can help trace

their individual and/or collective impact on the solution stability as well as the extension

of the nonlinear feedback loop. To avoid repeated definitions, we use the same symbols as

those in Shen (2014) and Shen (2015).

2 The Nonlinear Feedback Loop and its Extensions in the Lorenz Models

To derive the 3DLM, we use the following three Fourier modes:

M1 =
√
2sin(lx)sin(mz), M2 =

√
2cos(lx)sin(mz), M3 = sin(2mz), (1)

here l and m are defined as πa/H and π/H, representing the horizontal and vertical

wavenumbers, respectively. And, a is a ratio of the vertical scale of the convection cell

to its horizontal scale, i.e., a= l/m. H is the domain height, and 2H/a represents the

domain width. With the three modes in Eq. (1), the streamfunction ψ and the temperature

perturbation θ can be represented as:

ψ = C1

(

XM1

)

, (2)

θ = C2

(

YM2 −ZM3

)

, (3)

here, C1 and C2 are constants (Shen 2014). (X,Y,Z) represent the amplitudes of (M1,M2,M3),

respectively. The modes in the 3DLM include one horizontal wavenumber (i.e., l) and two

vertical wavenumbers (i.e., m and 2m). After the derivations, the 3DLM is written as:

dX

dτ
=−σX +σY, (4)

dY

dτ
=−XZ + rX −Y, (5)
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dZ

dτ
=XY − bZ. (6)

In the following, we will show that the two nonlinear terms, −XZ and XY , appear in

association with the nonlinear advection of temperature (J(ψ,θ)), and illustrate that these

two terms form a nonlinear feedback loop in the 3DLM. Then, we discuss how new modes are

selected to extend the nonlinear feedback loop in the higher-dimensional LMs. To facilitate

discussions below, the additional modes that have been used in the higher-dimensional LMs

(Shen, 2014, 2015; Yoo and Shen, 2015) are defined as follows:

M4 =
√
2sin(lx)sin(3mz), M7 =

√
2sin(lx)sin(5mz), (7)

M5 =
√
2cos(lx)sin(3mz), M6 = sin(4mz), (8)

M8 =
√
2cos(lx)sin(5mz), M9 = sin(6mz). (9)

2.1 The nonlinear feedback loop in the 3DLM

In this section, we first discuss the characteristics of nonlinearity associated with the Jaco-

bian term represented by a finite number of Fourier modes. With Eqs. (2-3), we have

J(ψ,θ) = C1C2

(

XY J(M1,M2)−XZJ(M1,M3)

)

. (10)

J(ψ,θ) is now expressed in terms of the summation of two nonlinear terms, J(M1,M2)

and J(M1,M3) whose coefficients are XY and −XZ, respectively. Through straightforward

derivations, we obtain

J(M1,M2)≈ 2mlsin(mz)cos(mz) =mlM3, (11)

and

J(M1,M3)≈
√
2mlcos(lx)

(

sin(3mz)+ sin(−mz)
)

. (12)

The vertical wave number of 3m is not used in the 3DLM, so the sin(3mz) is neglected.

Thus, Eq. (12) becomes

J(M1,M3)≈
√
2mlcos(lx)sin(−mz) =−mlM2. (13)

From Eqs. (11) and (13), a loop can be identified as follows. As Eq. (13) gives M2 ≈
−J(M1,M3)/(ml), we can plug the M2 into Eq. (11) to have

J(M1,J(M1,M3)) =−(ml)2M3.

Similarly, we can derive

J(M1,J(M1,M2) =−(ml)2M2.
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Therefore, with the inclusion of the M3, a loop with M2 →M3 →M2 is introduced in the

3DLM. More importantly, downscale and upscale transfer processes can be identified using

Eqs. (11) and (13). M2 and M3 have vertical wave numbers of m and 2m, respectively.

Eq. (11) suggests that the nonlinear interaction between M1 and M2 leads to a downscale

transfer (to the M3 mode), while Eq. (13) suggests that the nonlinear interaction between

M1 and M3 leads to a upscale transfer (to the M2). However, as sin(3mz) is not included,

the approximation using Eq. (13) neglects a downscale transfer (from the M5 mode with

sin(2mz) to the mode with sin(3mz), which will discussed in details in section 2.2.

Next, we illustrate the role of the nonlinear feedback loop in the “nonlinear” 3DLM.

Without the inclusion of the nonlinear terms −XZ and XY , Eqs. (4-6) of the 3DLM reduce

to
dX

dτ
=−σX +σY, (14)

dY

dτ
= rX −Y, (15)

dZ

dτ
=−bZ. (16)

Equations (14-15), which are decoupled with Eq. (16), form a forced dissipative system with

only linear terms. The system has only a trivial critical point (X = Y = 0) and produces

unstable normal-mode solutions (i.e., exponentially growing with time) as r > 1. Therefore,

our analysis indicates that the inclusion ofM3 introduces Eq. (16) and the enabled feedback

loop (i.e., Eqs. 11 and 13) couples Eq. (16) with Eqs. (14-15) to form the (nonlinear) 3DLM

(Eqs. 4-6) which enables the appearance of convection solutions. From a perspective of total

energy conservation, the inclusion of the M3 mode can help conserve the total energy in the

dissipationless limit, which is discussed in Appendix A of Shen (2014). Mathematically, the

feedback loop with the nonlinear terms in Eqs. 5 and 6 (i.e., −XZ and XY ) leads to the

change in the behavior of the system’s solutions; the (nonlinear) 3DLM system produces non-

trivial critical points, which may be stable (e.g., for 1< r < 24.74) or ”unstable” (chaotic)

(e.g., for r > 25). In the next sections, we discuss how the nonlinear feedback loop in the

3DLM can be extended through proper selections of new modes.

2.2 An extension of the nonlinear feedback loop in the 5DLM

The increased degree of nonlinearity in the 5DLM, which has been discussed in Fig. 1 of

Shen (2014), is briefly summarized below. In the derivation of the 3DLM, the mode with

sin(3mz) in Eq. (12) was neglected. Therefore, it is natural to include
√
2cos(lx)sin(3mz)
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as the M5 mode (Eq. 8). Thus, Eq. (12) can be written as

J(M1,M3)≈
√
2mlcos(lx)

(

sin(3mz)+ sin(−mz)
)

=ml(M5 −M2). (17)

From a perspective of nonlinear interaction, the above mode-mode interaction in Eq. (17)

indicates the route of the downscale and upscale energy transfer to the M5 and M2 modes,

respectively. The M5 mode can further interact with the M1 mode to provide feedback to

the M3 mode through

J(M1,M5)≈ml

(

2sim(4mz)− sin(2mz)

)

= 2mlM6 −mlM3. (18)

The processes in Eqs. (17-18) add a new loop (e.g., M3 →M5 →M3) which is connected

to the (existing) feedback loop (e.g., M2 →M3 →M2) of the 3DLM. Therefore, the feed-

back loop in the 3DLM is extended with the inclusion of the M5 mode in the 5DLM. The

original feedback loop and new feedback loop may be viewed as the main trunk and branch,

respectively. Note that the term ”extension of the nonlinear feedback loop” indicates the

linkage between the existing loop and the new loop. It was reported that inclusion of new

modes could produce additional equations that are not coupled with the 3DLM, leading to a

generalized LM with the same stability as the 3DLM (e.g., Eqs. 11-16 of Roy and Musielak

(2007a)). In this case, the original nonlinear feedback loop (of the 3DLM) is not extended

with the new modes.

With the inclusion ofM5, J(M1,M5) provides not only upscaling feedback to theM3 mode

but also a downscale energy transfer to a smaller-scale wave mode that, in turn, requires

the inclusion of the sin(4mz) mode (i.e., M6 mode) (Eq. 18). As discussed in Appendix A

of Shen (2014), the M6 mode is required to conserve the total energy in the dissipationless

limit. The feedback loop is further extended to M5 →M6 →M5 through J(M1,M5) and

J(M1,M6), as shown in Table 2 of Shen (2014) and discussed in section 3.1 of Shen (2015).

In summary, the two modes (M5 and M6) with higher vertical wavenumbers are added to

improve the presentation of vertical temperature, and, therefore, the accuracy of the vertical

advection of temperature, as shown:

θ = C2

(

YM2 −ZM3 +Y1M5 −Z1M6

)

, (19)

J(ψ,θ) = C1C2

(

XY J(M1,M2)−XZJ(M1,M3)+XY1J(M1,M5)−XZ1J(M1,M6)

)

. (20)

While the inclusion of M3 forms a feedback loop in the 3DLM, the inclusion of M5 and M6

in the 5DLM extends the original feedback loop.
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2.3 An extended nonlinear feedback loop in the 6DLM

As discussed in the previous sections, the inclusion of M5 and M6 modes is not only to

improve the representations of the temperature perturbation and the nonlinear advection

of temperature, but also to to extend the original nonlinear feedback loop. In this section,

we discuss the selection of M4 that is in association with the M5 mode. The appearance

of ∂M5/∂x associated with the linear term ∂θ/∂x of Eq. (1) of Shen (2014,2015) requires

the inclusion of an M4 mode and the ∂M4/∂x associated with △T∂ψ/∂x of Eq. (2) of

Shen (2014,2015) provides feedback to the M5 mode (in Table 1 of Shen, 2014). The M4

mode shares the same horizontal and vertical wave numbers as the M5 but has a different

phase (i.e., sin(lx) vs. cos(lx) in Eqs. 7-8 or in Eq. 4 of Shen 2015). Alternatively, via the

∂θ/∂x and △T∂ψ/∂x, the M4 and M5 modes are linked, as discussed in section 3.1 in the

submitted manuscript (Shen 2015).

When M4 is included, it improves the representation of the streamfunction and thus the

advection of temperature, as shown:

ψ = C1

(

XM1 +X1M4

)

, (21)

J(ψ,θ) = C1C2

(

J(XM1 +X1M4, Y M2 +Y1M5 −ZM3 −Z1M6)

)

, (22)

here X1 represents the amplitude of the mode M4. Now, the Jacobian term includes

J(XM1,Y M2+Y1M5−ZM3−Z1M6) and J(X1M4,Y M2+Y1M5−ZM3−Z1M6). The for-

mer was first discussed in the 5DLM by Shen (2014), while the latter is discussed using the

6DLM in this study. While the M4 mode introduces linear forcing term (e.g., rX1), it also

extends the nonlinear feedback loop with J(X1M4,Y M2), J(X1M4,Y1M5), J(X1M4,ZM3),

and J(X1M4,Z1M6). The outcome of each of these Jacobian terms can be found in the

Table 2 of Shen (2014), and the impact of M4 is discussed in Shen (2015).

2.4 Further extensions of the nonlinear feedback loop in Higher-order LMs

To examine the role of the nonlinear feedback loop in the solution stability of higher-order

LMs, we have derived the following higher-dimensional Lorenz models, including 7D, 8D and

9D LMs. These models give a larger critical value of the normalized Rayleigh parameter

for the onset of chaos, as compared to the 3D, 5D and 6D Lorenz models. A manuscript

is being prepared for publication (Yoo and Shen, 2015). Here, a brief description for the

higher-order LMs is given as follows:

1. 7DLM includes all modes in the 5DLM and the M8 and M9 modes (Eq. 9) that can

improve the representation of θ and J(ψ,θ) and to extend the nonlinear feedback loop

to provide negative nonlinear feedback;
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2. 8DLM contains all modes in the 7DLM and the M4 mode (Eq. 7) that can improve

the representation of ψ and J(ψ,θ);

3. 9DLM includes all modes in the 8DLM and an additional modeM7 (Eq. 7) to improve

the representation of ψ and J(ψ,θ).

Note that M8 with sin(5mz) is selected based on the analysis of J(M1,M6) as shown in

the Table 2 of Shen (2014). M9 is added to enable the downscale transfer from J(M1,M8).

Similar to the inclusion of M4, M7 is introduced to have a different phase to that of M8.
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