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1 Introduction

This report, which documents the mathematical analysis on the extensions of the nonlinear
feedback loop in the 5DLM and 6DLM as well as higher-dimensional Lorenz models, is
provided as supplementary materials to the manuscript entitled “ Nonlinear feedback in the
six-dimensional Lorenz model: impact of an additional heating term. by Shen (2015).” In
the following, we briefly introduce the three-dimensional (3D) Lorenz model (3DLM, Lorenz,
1963) and its Fourier modes, and identify the nonlinear feedback loop of the 3DLM by
analyzing the nonlinear Jacobian term J(,6). We then discuss how the analysis of J(¢,0)
can help select new modes to extend the nonlinear feedback loop in higher-dimensional LMs.
Our approach, using incremental changes in the number of Fourier modes, can help trace
their individual and/or collective impact on the solution stability as well as the extension
of the nonlinear feedback loop. To avoid repeated definitions, we use the same symbols as

those in Shen (2014) and Shen (2015).

2 The Nonlinear Feedback Loop and its Extensions in the Lorenz Models
To derive the 3DLM, we use the following three Fourier modes:
M, = V2sin(lz)sin(mz), My =+ 2cos(lx)sin(mz), Ms = sin(2mz), (1)

here | and m are defined as ma/H and w/H, representing the horizontal and vertical
wavenumbers, respectively. And, a is a ratio of the vertical scale of the convection cell
to its horizontal scale, i.e., a=1/m. H is the domain height, and 2H/a represents the
domain width. With the three modes in Eq. (1), the streamfunction ¢ and the temperature

perturbation # can be represented as:

P ==C (XM1>, (2)

0=0C, (YM2 - ZM3> , (3)

here, C; and C5 are constants (Shen 2014). (X,Y, Z) represent the amplitudes of (M7, Ma, M3),
respectively. The modes in the 3DLM include one horizontal wavenumber (i.e., I) and two

vertical wavenumbers (i.e., m and 2m). After the derivations, the 3DLM is written as:

dX
— =—0X +0Y, (4)
dr

dy

—=-XZ+rX-Y, (5)
dr



az
pri XY —-bZ. (6)
In the following, we will show that the two nonlinear terms, —XZ and XY, appear in
association with the nonlinear advection of temperature (J(¢,6)), and illustrate that these
two terms form a nonlinear feedback loop in the 3SDLM. Then, we discuss how new modes are
selected to extend the nonlinear feedback loop in the higher-dimensional LMs. To facilitate
discussions below, the additional modes that have been used in the higher-dimensional LMs

(Shen, 2014, 2015; Yoo and Shen, 2015) are defined as follows:

My =\ 2sin(lx)sin(3mz), My =/2sin(lz)sin(5mz), (7)
M5 = 2cos(lz)sin(3mz), Mg = sin(4mz), (8)
Mg = V2cos(lz)sin(5mz), My = sin(6mz). 9)

2.1 The nonlinear feedback loop in the 3DLM

In this section, we first discuss the characteristics of nonlinearity associated with the Jaco-

bian term represented by a finite number of Fourier modes. With Eqs. (2-3), we have
J(1,0) = C1Cs <XYJ(M1,M2)XZJ(M1,M3)>- (10)

J(1,0) is now expressed in terms of the summation of two nonlinear terms, J(Mj, M)
and J(M;y, Ms) whose coefficients are XY and —X Z, respectively. Through straightforward

derivations, we obtain
J(My, Ms) =~ 2mlsin(mz)cos(mz) = mlMs, (11)

and

J(My, Ms) = v/2mlcos(ix) <sin(3mz) + sin(—mz)) . (12)

The vertical wave number of 3m is not used in the 3DLM, so the sin(3mz) is neglected.

Thus, Eq. (12) becomes
J(My, M3) ~ v/2mlcos(lx)sin(—mz) = —mlMs,. (13)

From Egs. (11) and (13), a loop can be identified as follows. As Eq. (13) gives My~
—J(My,Ms)/(ml), we can plug the M into Eq. (11) to have

J(MlaJ(M17M3)) = —(ml)2M3

Similarly, we can derive

J(My, J(My, Ms) = —(ml)? M.



Therefore, with the inclusion of the Ms, a loop with My — M3 — My is introduced in the
3DLM. More importantly, downscale and upscale transfer processes can be identified using
Egs. (11) and (13). Ms and M3 have vertical wave numbers of m and 2m, respectively.
Eq. (11) suggests that the nonlinear interaction between M; and M leads to a downscale
transfer (to the M3 mode), while Eq. (13) suggests that the nonlinear interaction between
M; and M3 leads to a upscale transfer (to the Ms). However, as sin(3mz) is not included,
the approximation using Eq. (13) neglects a downscale transfer (from the M5 mode with
sin(2mz) to the mode with sin(3mz), which will discussed in details in section 2.2.

Next, we illustrate the role of the nonlinear feedback loop in the “nonlinear” 3DLM.

Without the inclusion of the nonlinear terms —X Z and XY, Egs. (4-6) of the 3DLM reduce

to
X
ax =—0X+0Y, (14)
dr
dY
—=rX-Y 15
dr " ’ (15)
dz
— = -bZ. 16
dr (16)

Equations (14-15), which are decoupled with Eq. (16), form a forced dissipative system with
only linear terms. The system has only a trivial critical point (X =Y =0) and produces
unstable normal-mode solutions (i.e., exponentially growing with time) as r > 1. Therefore,
our analysis indicates that the inclusion of M3 introduces Eq. (16) and the enabled feedback
loop (i.e., Egs. 11 and 13) couples Eq. (16) with Eqgs. (14-15) to form the (nonlinear) 3DLM
(Eqgs. 4-6) which enables the appearance of convection solutions. From a perspective of total
energy conservation, the inclusion of the M3 mode can help conserve the total energy in the
dissipationless limit, which is discussed in Appendix A of Shen (2014). Mathematically, the
feedback loop with the nonlinear terms in Eqs. 5 and 6 (i.e., —XZ and XY) leads to the
change in the behavior of the system’s solutions; the (nonlinear) 3DLM system produces non-
trivial critical points, which may be stable (e.g., for 1 < r < 24.74) or "unstable” (chaotic)
(e.g., for r > 25). In the next sections, we discuss how the nonlinear feedback loop in the

3DLM can be extended through proper selections of new modes.
2.2 An extension of the nonlinear feedback loop in the 5DLM

The increased degree of nonlinearity in the 5DLM, which has been discussed in Fig. 1 of
Shen (2014), is briefly summarized below. In the derivation of the 3DLM, the mode with

sin(3mz) in Eq. (12) was neglected. Therefore, it is natural to include v/2cos(lx)sin(3mz)



as the M5 mode (Eq. 8). Thus, Eq. (12) can be written as
J(My, Ms) = v/2micos(lx) (sin(?)mz) + sin(—mz)) =mil(Ms — My). (17)

From a perspective of nonlinear interaction, the above mode-mode interaction in Eq. (17)
indicates the route of the downscale and upscale energy transfer to the M5 and Ms modes,
respectively. The M5 mode can further interact with the M; mode to provide feedback to
the M3 mode through

J(My, Ms) =~ ml (25im(4mz) - sin(2mz)> = 2miMg — miMs. (18)

The processes in Egs. (17-18) add a new loop (e.g., M3 — Mz — Ms3) which is connected
to the (existing) feedback loop (e.g., Ma — M3 — M>) of the 3DLM. Therefore, the feed-
back loop in the 3DLM is extended with the inclusion of the M5 mode in the 5DLM. The
original feedback loop and new feedback loop may be viewed as the main trunk and branch,
respectively. Note that the term “extension of the nonlinear feedback loop” indicates the
linkage between the existing loop and the mew loop. It was reported that inclusion of new
modes could produce additional equations that are not coupled with the 3DLM, leading to a
generalized LM with the same stability as the 3DLM (e.g., Egs. 11-16 of Roy and Musielak
(2007a)). In this case, the original nonlinear feedback loop (of the 3DLM) is not extended
with the new modes.

With the inclusion of My, J(M;y, Ms) provides not only upscaling feedback to the M3 mode
but also a downscale energy transfer to a smaller-scale wave mode that, in turn, requires
the inclusion of the sin(4mz) mode (i.e., Mg mode) (Eq. 18). As discussed in Appendix A
of Shen (2014), the Mg mode is required to conserve the total energy in the dissipationless
limit. The feedback loop is further extended to Ms — Mg — My through J(My, Ms) and
J(M;y, Ms), as shown in Table 2 of Shen (2014) and discussed in section 3.1 of Shen (2015).

In summary, the two modes (My and Mpg) with higher vertical wavenumbers are added to
improve the presentation of vertical temperature, and, therefore, the accuracy of the vertical

advection of temperature, as shown:

0=0C, <YM2 — ZM3+Y, M5 — Z1M6> , (19)

J(16,0) = C1Cy (XYJ(Ml,Mg)—XZJ(Ml,M3)+XY1J(M1,M5)—XZlJ(MhMG)) . (20)

While the inclusion of M3 forms a feedback loop in the 3DLM, the inclusion of M35 and Mg
in the 5DLM extends the original feedback loop.



2.3 An extended nonlinear feedback loop in the 6DLM

As discussed in the previous sections, the inclusion of My and Mg modes is not only to
improve the representations of the temperature perturbation and the nonlinear advection
of temperature, but also to to extend the original nonlinear feedback loop. In this section,
we discuss the selection of M, that is in association with the M5 mode. The appearance
of OMs5/0x associated with the linear term 96/0x of Eq. (1) of Shen (2014,2015) requires
the inclusion of an My mode and the dM,/dz associated with ATy /dzx of Eq. (2) of
Shen (2014,2015) provides feedback to the M5 mode (in Table 1 of Shen, 2014). The M,
mode shares the same horizontal and vertical wave numbers as the M5 but has a different
phase (i.e., sin(lz) vs. cos(lz) in Eqs. 7-8 or in Eq. 4 of Shen 2015). Alternatively, via the
00/0x and ATy /dx, the My and Ms modes are linked, as discussed in section 3.1 in the
submitted manuscript (Shen 2015).

When M, is included, it improves the representation of the streamfunction and thus the

advection of temperature, as shown:

=0 (XM1 +X1M4>, (21)

J(1,0) = C1Cy <J(XM1 + XMy, YMy+Y M5 — ZMs3 — Z1M6)>7 (22)

here X; represents the amplitude of the mode M,. Now, the Jacobian term includes
J(XM,Y Mo+ Y1 M5 —ZMs—Z1 M) and J(X1My,Y Mo+Y1 M5 — Z Ms— Z1 Mg). The for-
mer was first discussed in the 5DLM by Shen (2014), while the latter is discussed using the
6DLM in this study. While the My mode introduces linear forcing term (e.g., rX7), it also
extends the nonlinear feedback loop with J(X1 M4, Y Ms), J(X1 My, Y1 M5), J(X1 My, ZMs),
and J(X1My,Z1Mg). The outcome of each of these Jacobian terms can be found in the
Table 2 of Shen (2014), and the impact of My is discussed in Shen (2015).

2.4 Further extensions of the nonlinear feedback loop in Higher-order LMs

To examine the role of the nonlinear feedback loop in the solution stability of higher-order
LMs, we have derived the following higher-dimensional Lorenz models, including 7D, 8D and
9D LMs. These models give a larger critical value of the normalized Rayleigh parameter
for the onset of chaos, as compared to the 3D, 5D and 6D Lorenz models. A manuscript
is being prepared for publication (Yoo and Shen, 2015). Here, a brief description for the

higher-order LMs is given as follows:

1. 7DLM includes all modes in the 5DLM and the Mg and My modes (Eq. 9) that can
improve the representation of § and J(v,0) and to extend the nonlinear feedback loop

to provide negative nonlinear feedback;



2. 8DLM contains all modes in the 7DLM and the M, mode (Eq. 7) that can improve
the representation of ¥ and J(¢,0);

3. 9DLM includes all modes in the 8DLM and an additional mode M7 (Eq. 7) to improve
the representation of ¥ and J(¢,0).

Note that Mg with sin(5mz) is selected based on the analysis of J(M;,Ms) as shown in
the Table 2 of Shen (2014). My is added to enable the downscale transfer from J(Mj, Mg).

Similar to the inclusion of My, M7 is introduced to have a different phase to that of Msg.
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