Articles | Volume 26, issue 2
Research article
14 Jun 2019
Research article |  | 14 Jun 2019

A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions

Andrey A. Popov and Adrian Sandu

Related authors

A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253,,, 2022
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A range of outcomes: the combined effects of internal variability and anthropogenic forcing on regional climate trends over Europe
Clara Deser and Adam S. Phillips
Nonlin. Processes Geophys., 30, 63–84,,, 2023
Short summary
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47,,, 2023
Short summary
Guidance on how to improve vertical covariance localization based on a 1000-member ensemble
Tobias Necker, David Hinger, Philipp Johannes Griewank, Takemasa Miyoshi, and Martin Weissmann
Nonlin. Processes Geophys., 30, 13–29,,, 2023
Short summary
Weather pattern dynamics over western Europe under climate change: predictability, information entropy and production
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12,,, 2023
Short summary
Using a hybrid optimal interpolation–ensemble Kalman filter for the Canadian Precipitation Analysis
Dikraa Khedhaouiria, Stéphane Bélair, Vincent Fortin, Guy Roy, and Franck Lespinas
Nonlin. Processes Geophys., 29, 329–344,,, 2022
Short summary

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a
Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, 2007. a
Anderson, J. L.: Localization and sampling error correction in ensemble Kalman filter data assimilation, Mon. Weather Rev., 140, 2359–2371, 2012. a
Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, J. Comput. Phys., 1, 119–143, 1966. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, Philadelphia, PA, USA, 2016. a, b
Short summary
This work has to do with a small part of existing algorithms that are used in applications such as predicting the weather. We provide empirical evidence that our new technique works well on small but representative models. This might lead to creation of a better weather forecast and potentially save lives as in the case of hurricane prediction.