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Abstract. Ever since its inception, the ensemble Kalman
filter (EnKF) has elicited many heuristic approaches that
sought to improve it. One such method is covariance local-
ization, which alleviates spurious correlations due to finite
ensemble sizes by using relevant spatial correlation informa-
tion. Adaptive localization techniques account for how cor-
relations change in time and space, in order to obtain im-
proved covariance estimates. This work develops a Bayesian
approach to adaptive Schur-product localization for the de-
terministic ensemble Kalman filter (DEnKF) and extends
it to support multiple radii of influence. We test the pro-
posed adaptive localization using the toy Lorenz’96 prob-
lem and a more realistic 1.5-layer quasi-geostrophic model.
Results with the toy problem show that the multivariate ap-
proach informs us that strongly observed variables can tol-
erate larger localization radii. The univariate approach leads
to markedly improved filter performance for the realistic geo-
physical model, with a reduction in error by as much as 33 %.

1 Introduction

Data assimilation (Asch et al., 2016; Law et al., 2015;
Evensen, 2009; Reich and Cotter, 2015) fuses informa-
tion from the model forecast states (Eq. 1) and observa-
tions (Eq. 3) in order to obtain an improved estimation of the
truth at any given point in time. Data assimilation approaches
include the ensemble Kalman filters (EnKFs) (Evensen,
1994, 2009; Constantinescu et al., 2007b) that rely on Gaus-
sian assumptions, particle filters for non-Gaussian distribu-
tions (Van Leeuwen et al., 2015; Attia et al., 2017; Attia and
Sandu, 2015), and variational approaches, rooted in control

theory (Le Dimet and Talagrand, 1986; Sandu et al., 2005;
Carmichael et al., 2008).

EnKF is an important family of data assimilation tech-
niques that propagate both the mean and covariance of the
state uncertainty through the model using a Monte Carlo ap-
proach. While large dynamical systems of interest have a
large number of modes along which errors can grow, the
number of ensemble members used to characterize uncer-
tainty remains relatively small due to computational costs.
As a result, inaccurate correlation estimates obtained through
Monte Carlo sampling can profoundly affect the filter re-
sults. Techniques such as covariance localization and infla-
tion have been developed to alleviate these problems (Petrie
and Dance, 2010).

Localization techniques take advantage of the fundamen-
tal property of geophysical systems that correlations between
variables decrease with spatial distance (Kalnay, 2003; Asch
et al., 2016). This prior knowledge is used to scale ensemble-
estimated covariances between distant variables so as to re-
duce inaccurate, spurious correlations. The prototypical ap-
proach to localization is a Schur-product-based tapering of
the covariance matrix (Bickel and Levina, 2008); theoretical
results ensure that the covariance matrices estimated using
small ensembles sampled from a multivariate normal proba-
bility distribution, upon tapering, approach quickly the true
covariance matrix. A formal theory of localization (Flow-
erdew, 2015) has been attempted, though a true multivariate
theory is still out of our grasp. Practical implementations of
localization rely on restricting the information flow, either in
state space or in observation space, to take place within a
given “radius of influence” (Hunt et al., 2007). Some vari-
ants of EnKF like the maximum likelihood ensemble filter
(MLEF) (Zupanski, 2005) reduce the need for localization,
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while others use localization in order to efficiently parallelize
the analysis cycles in space (Nino-Ruiz et al., 2015).

The performance of the EnKF algorithms critically de-
pends on the correct choice of localization radii (also known
as the decorrelation distances), since values that are too large
fail to correct for spurious correlations, while values that
are too small throw away important correlation informa-
tion. However, the physical values of the spatial decorrela-
tion scales are not known a priori, and they change with the
temporal and spatial location. At the very least the decorrela-
tion scales depend on the current atmospheric flow. In atmo-
spheric chemistry systems, because of the drastic difference
in reactivity, each chemical species has its own individual lo-
calization radius (Constantinescu et al., 2007a). Multi-scale
schemes (Buehner and Shlyaeva, 2015) for localization are
an immediate necessity. Clearly, the widely used approach
of estimating decorrelation distances from historical ensem-
bles of simulations and then using a constant averaged value
throughout the space and time domain leads to a suboptimal
performance of ensemble Kalman filters.

Adaptive localization schemes seek to estimate decorre-
lation distances from the data, so as to optimize the filter
performance according to some criteria. One approach to
adaptive localization utilizes an ensemble of ensembles to
detect and mitigate spurious correlations (Anderson, 2007).
Relying purely on model dynamics and foregoing reliance
on spatial properties of the model, the method is very ef-
fective for small-scale systems, but its applicability to large-
scale geophysical problems is unclear. There is, however,
evidence that optimal localization depends more on ensem-
ble size and observation properties than on model dynam-
ics (Kirchgessner et al., 2014) and that adaptive approaches
whose correlation functions follow these dynamics do not
show a significant improvement over conventional static lo-
calization (Bishop and Hodyss, 2011). Methods such as sam-
pling error correction (Anderson, 2012) take advantage of
these properties to build correction factors and apply them as
an ordinary localization scheme. A different approach uses
the inherent properties of correlation matrices to construct
Smoothed ENsemble COrrelations Raised to a Power (SEN-
CORP) (Bishop and Hodyss, 2007) matrices that in the lim-
iting case remove all spurious correlations. This method re-
lies purely on the statistical properties of correlation matrices
and ignores the model dynamics and the spatial and tempo-
ral dependencies it defines. A more theoretically sound ap-
proach (Ménétrier et al., 2015) would try to create a localiza-
tion matrix such that the end result would better approximate
the asymptotic infinite-ensemble covariance matrix. A recent
approach considers machine learning algorithms to capture
hidden properties in the propagation model that affect the lo-
calization parameters (Moosavi et al., 2018). Still another re-
cent approach considers localization (and inflation) in terms
of optimal experimental design (Attia and Constantinescu,
2018).

This work develops a Bayesian framework to dynamically
learn the parameters of the Schur-product-based localization
from the ensemble of model states and the observations dur-
ing the data assimilation in geophysical systems. Specifi-
cally, the localization radii are considered random variables
described by parameterized distributions and are retrieved as
part of the assimilation step together with the analysis states.
One of the primary goals of this paper is to develop ways in
which such an approach could be extended to both multivari-
ate and time-dependent 4-D-esque cases. We prove the ap-
proach’s empirical validity through a type of idealized vari-
ance minimization that has access to the true solution (which
we call an oracle). We then show that the approach provides
a more stable result with a much larger initial radius guess.
The exploration of the idea is done through the use of several
test problems such as that of the Lorenz’96 problem, a mul-
tivariate variant of which we introduce specifically for this
paper, and a more realistic quasi-geostrophic model to show-
case the applicability of the method to scenarios more in line
with operational ones.

The paper is organized as follows. Section 2 reviews back-
ground material for EnKF and Schur-product localization.
Section 3 provides a framework for naturally extending uni-
variate localization to the multivariate case. Section 4 de-
scribes the proposed theoretical framework for localization
and the resulting optimization problems for maximum like-
lihood solutions. Numerical results with three test problems
reported in Sect. 5 provide empirical validation of the pro-
posed approach.

2 Background

We consider a computational model that approximates the
evolution of a physical dynamical system such as the atmo-
sphere:

xi+1 =Mi,i+1(xi)+ ξ i . (1)

The (finite-dimensional) state of the model xi ∈ Rn at time ti
approximates the (finite-dimensional projection of the) phys-
ical true state xt

i ∈ Rn. The computational model (Eq. 1) is
inexact, and we assume the model error to be additive and
normally distributed, ξ i ∼N (0,Qi).

The initial state of the model is also not precisely known,
and to model this uncertainty we consider that it is a random
variable drawn from a specific probability distribution:

x0 ∼N (xt
0,P

b
0). (2)

Consider also observations of the truth,

yi+1 =H(xt
i+1)+ ηi+1, (3)

that are corrupted by normal observation errors ηi+1 ∼

N (0,Ri+1). We consider here the case with a linear obser-
vation operator, H :=H.

Nonlin. Processes Geophys., 26, 109–122, 2019 www.nonlin-processes-geophys.net/26/109/2019/



A. A. Popov and A. Sandu: A Bayesian approach to multivariate adaptive localization 111

Consider an ensemble of N states x ∈ Rn×N sampling the
probability density that describes the uncertainty in the state
at a given time moment (the time subscripts are omitted
for simplicity of notation). The ensemble mean, ensemble
anomalies, and ensemble covariance are

x̄ =
1
N

x1N , X= x− x̄1>N , P=
1

N − 1
XX>, (4)

respectively. Typically N is smaller than the number of
positive Lyapunov exponents in our dynamical system, and
much smaller than the number of states (Bergemann and Re-
ich, 2010). Consequently, the ensemble statistics (Eq. 4) are
marred by considerable sampling errors. The elimination of
sampling errors, manifested as spurious correlations in the
covariance matrix (Evensen, 2009), leads to the need for lo-
calization.

2.1 Kalman analysis

The mean and the covariance are propagated first through
the forecast step. Specifically, each ensemble member is ad-
vanced to the current time using the model (1) to obtain the
ensemble forecast xf (with mean x̄f and covariance Pf) at the
current time. A covariance inflation step Xf

← αXf, α > 1
can be applied to prevent filter divergence (Anderson, 2001).

The mean and covariance are then propagated through
the analysis step, which fuses information from the forecast
mean and covariance and from observations (Eq. 3) to pro-
vide an analysis ensemble xa (with mean x̄a and covariance
Pa) at the same time. Here we consider the deterministic
EnKF (DEnKF) (Sakov and Oke, 2008), which obtains the
analysis as follows:

x̄a
= x̄f
+Kd, (5a)

K= PfH>
(

HPf H>+R
)−1

, (5b)

d = y−H x̄f, (5c)

Xa
= Xf
−

1
2

KHXf, (5d)

xa
= x̄a1>N +Xa, (5e)

where K is the Kalman gain matrix and d the vector of inno-
vations. DEnKF is chosen for simplicity of implementation
and ease of amending to support Schur-product-based local-
ization. However, the adaptive localization techniques dis-
cussed herein are general – they do not depend on this choice
and are equally applicable to any EnKF algorithm.

2.2 Schur-product localization

Covariance localization involves the Schur (element-wise)
product between a symmetric positive semi-definite matrix
ρ and the ensemble forecast covariance:

Pf
← ρ ◦Pf, Pf

i,j ← ρi,j Pf
i,j . (6)

By the Schur-product theorem (Schur, 1911), if ρ and Pf are
positive semi-definite, then their Schur product is positive
semi-definite. The matrix ρ is chosen such that it reduces the
sampling errors and brings the ensemble covariance closer
to the true covariance matrix. We note that one can apply
the localization in ways that mitigate the problem of storing
full covariance matrices (Houtekamer and Mitchell, 2001).
Efficient implementation aspects are not discussed further as
they do not impact the adaptive localization approaches de-
veloped herein.

We seek to generate the entries of the localization matrix
ρ from a localization function ` : R≥0→ [0,1], used to rep-
resent the weights applied to each individual covariance:

ρ =
[
`(d(i,j)/r)

]
1≤i,j≤n. (7)

The function ` could be thought of as a regulator which
brings the ensemble correlations in line with the physi-
cal correlations, which are often compactly supported func-
tions (Gneiting, 2002). The metric d quantifies the physical
distance between model variables, such that d(i,j) repre-
sents the spatial distance between the state-space variables
xi and xj . The “radius of influence” parameter r represents
the correlation spatial scale; the smaller r is, the faster vari-
ables decorrelate with increasing distance.

If the spatial discretization is time-invariant, and ` and r
are fixed, then the matrix ρ is also time-invariant. The goal
of the adaptive localization approach is to learn the best value
of r dynamically from the ensemble.

A common localization function used in production soft-
ware is due to Gaspari and Cohn (Gaspari and Cohn, 1999;
Gneiting, 2002; Petrie, 2008). Here we use the Gaussian
function

`(u)= exp
(
−u2/2

)
(8)

to illustrate the adaptive localization strategy. However, our
approach is general and can be used with any suitable local-
ization function.

3 Extension to multivariate localization functions

It is intuitively clear that different physical effects propagate
spatially at different rates, leading to different correlation dis-
tances. Consequently, different state-space variables should
be analyzed using different radii of influence. This raises the
additional question of how to localize the covariance of two
variables when each of them is characterized by a different
radius of influence. One approach (Roh et al., 2015) is to use
a multivariate compactly supported function (Askey, 1973;
Porcu et al., 2013) to calculate the modified error statistics.
We however wish to take advantage of already developed
univariate compactly supported functions.

We define the mapping operator r : Nn→ Ng that assigns
each state-space component to a group. All state variables
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assigned to the same group are analyzed using the same lo-
calization radius. Assuming a fixed mapping, the localization
parameters are the radii values for each group υ ∈ Rg . These
values can be tuned independently during the adaptive al-
gorithm. The corresponding prolongation operator p : Rg→
Rn assigns one of the g radii values to each of the n state-
space components:

r= p(υ). (9)

Setting g = 1 and p(υ)= υ1n recovers the univariate local-
ization approach.

Petrie (2008) showed that true square-root filters such as
the LETKF (Hunt et al., 2007) are not amenable to Schur-
product-based localization, and therefore they need to rely
on sequentially assimilating every observation space vari-
able. Here we wish to combine both the ease-of-use of Schur-
product-based localization and the utility of multivariate lo-
calization techniques.

To this end, we introduce a commutative, idempotent,
binary operation, m : R≥0×R≥0→ R≥0, that computes a
“mean localization function value” so as to harmonize the
effects of different values of the localization radii. More
explicitly, given 0≤ a ≤ b, m should have the properties
that m(a,a)= a, m(b,b)= b, and m(a,b)=m(b,a). We
also impose the additional common sense property that a ≤
m(a,b)≤ b. We consider here several simple mean functions
m as follows:

mmin(λi,λj )=min{λi,λj }, (10a)
mmax(λi,λj )=max{λi,λj }, (10b)
mmean(λi,λj )=

(
λi + λj

)
/2, (10c)

msqrt(λi,λj )=
√
λiλj , (10d)

mrms(λi,λj )=

√
λ2
i + λ

2
j/
√

2 , (10e)

mharm(λi,λj )=
2λiλj
λi + λj

. (10f)

Assume that the variables xi and xj have the localization
radii ri and rj , respectively. We extend the definition of the
localization matrix ρ to account for multiple localization
radii associated with different variables as follows:

ρ =
[
m
(
`(d(i,j)/ri),`(d(j, i)/rj )

)]
1≤i,j≤n

. (11)

The localization sub-matrix of state-space variables xi and
xj[
`(0) ρi,j
ρj,i `(0)

]
(12)

is a symmetric matrix for any mean function (10a). When `
is a univariate compactly supported function, our approach
implicitly defines its m-based multivariate counterpart.

One of the common criticisms of a distance assumption
about the correlation of geophysical systems is that two vari-
ables in close proximity to each other might have very weak

correlations. For example, in a model that takes into account
the temperature and concentration of stationary cars at any
given location, the two distinct types of information might
not at all be correlated with each other. The physical distance
between the two, however, is 0, and thus any single corre-
lation function will take the value 1 and does not remove
any spurious correlations. One can mitigate this problem by
considering univariate localization functions for each pair of
components `i,j = `j,i and extending the localization matrix
as follows:

ρ =
[
m
(
`i,j (d(i,j)/ri),`j,i(d(j, i)/rj )

)]
1≤i,j≤n

. (13)

We will not analyze multiple localization functions.

4 Bayesian approach

We denote the analysis step of the filter by

xa
=A(xf,y,υ), (14)

where υ are the variable localization and inflation parame-
ters. In this paper, we look solely at varying localization and
will keep inflation constant.

In the Bayesian framework, we consider the localization
parameters to be random variables with an associated prior
probability distribution. Specifically, we assume that each
of the radii υ(j) is distributed according to a univariate
gamma distribution υ(j) ∼ 0(α(j),β(j)). The gamma prob-
ability density

f0(υ;α,β)=
βαυα−1e−βυ

0(α)
, υ,α,β > 0 (15)

has mean ῡ = α/β and variance Var(υ)= α/β2. We have
chosen the gamma distribution as it is the maximum entropy
probability distribution for a fixed mean (Singh et al., 1986),
i.e., is the best distribution that one can choose without addi-
tional information. It is supported on the interval (0,∞) and
has exactly two free parameters (allowing us to control both
the mean and variance).

The assimilation algorithm computes a posterior (analy-
sis) probability density over the state space considering the
probabilities of observations and parameters. We start with
Bayes’ identity:

π(x,υ|y)∝ π(y|x,υ)π(x|υ)π(υ)

= π(y|x,υ)π(x|υ,y)π(υ)π(y). (16)

Note that π(y) is a constant scaling factor. Here π(υ) repre-
sents the (prior) uncertainty in the parameters, π(x|y,υ) rep-
resents the uncertainty in the state for a specific value of the
parameters, and π(y|x,υ) represents the likelihood of ob-
servations with respect to both state and parameters. Under
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Gaussian assumptions about the state and observation errors,
Eq. (16) can be explicitly written out as

π(x,υ‖y)∝exp
(
−

1
2

∥∥∥A(xf,y,υ)− xf
∥∥∥2

Pf
(υ)

−1

)
exp

(
−

1
2

∥∥∥y−HA(xf,y,υ)

∥∥∥2

R−1

)
fP (υ), (17)

with fP (υ) given by Eq. (15). Note that, once the analysis
scheme (14) has been chosen, the analysis state becomes a
function of υ, and the conditional probability in Eq. (17) rep-
resents the posterior probability of υ.

The negative log likelihood of the posterior probabil-
ity (Eq. 17) is

J (υ)=− log
[

exp
(
−

1
2

∥∥∥A(xf,y,υ)− xf
∥∥∥2

Pf
(υ)

−1

)
=− log[ exp

(
−

1
2

∥∥∥y−HA(xf,y,υ)

∥∥∥2

R−1

)
g∏
j=1

υ(j),α−1 exp
(
−β(j)υ(j)

)]

=
1
2

∥∥∥A(xf,y,υ)− xf
∥∥∥2

Pf
(υ)

−1

=+
1
2

∥∥∥y−HA(xf,y,υ)

∥∥∥2

R−1

=+

g∑
j=1

(
β(j)υ(j)−

(
α(j)− 1

)
log

(
υ(j)

))
. (18)

Through liberal use of the chain rule and properties of sym-
metric semi-positive definite matrices, the gradient of the
cost function with respect to individual localization param-
eters reads as

∂J
∂υ(j)

=
1
2

∥∥∥Pf
(υ)

−1
(
A(xf,y,υ)− xf

)∥∥∥2
∂Pf
(υ)

∂υ(j)

=+
∂A(xf,y,υ)

∂υ(j)

>

Pf
(υ)

−1
(
A(xf,y,υ)− xf

)
=−

(
H
∂A(xf,y,υ)

∂υ(j)

)>
R−1

(
y−HA(xf,y,υ)

)
=+β(j)− (α(j)− 1)

1
υ(j)

, (19)

where we took advantage of the properties of symmetric ma-
trices. Note that without the assumption that parameters are
independent, the gradient would involve higher-order ten-
sors.

4.1 Solving the optimization problem

Under the assumptions that the analysis function (14) is
based on DEnKF (Eq. 5a) and (the not-quite-correct assump-

tion) that all ensemble members are i.i.d., we obtain

∥∥∥A(xf,y,υ)− xf
i

∥∥∥2

Pf−1
(υ)

=

N∑
e=1

∥∥∥K(υ)z(:,e)
∥∥∥2

Pf−1
(υ)

=

N∑
e=1

∥∥∥S−1
(υ)z

(:,e)
∥∥∥2

HPf
(υ)H>

,

z= d1>N −
1
2

HXf, (20)∥∥∥y−HA(xf,y,υ)

∥∥∥2

R−1
=

N∑
e=1

∥∥∥g(:,e)(υ)

∥∥∥2

R−1
,

g(υ) =
(
I−HK(υ)

)
d1>N

=−HXf

=+
1
2

HK(υ)HXf,

K(υ) = Pf
(υ)H

>S−1
(υ),

S(υ) =HPf
(υ)H

>
+R. (21)

Combining Eqs. (18), (20), and (21) leads to the cost function
form:

J (υ)=
N∑
e=1

[
1
2

∥∥∥S−1
(υ)z

(:,e)
∥∥∥2

HPf
(υ)H>

+
1
2

∥∥∥g(:,e)(υ)

∥∥∥2

R−1

]

=+

g∑
j=1

(
β(j)υ(j)−

(
α(j)− 1

)
log

(
υ(j)

))
, (22)

which only requires the computation of the background co-
variance matrix HPf

(υ)H
> in observation space, thereby re-

ducing the amount of computation and storage. The equiva-
lent manipulations of the gradient lead to

∂J
∂υ(j)

=

N∑
e=1

[
1
2

∥∥∥S−1
(υ)z

(:,e)
∥∥∥2

H
∂Pf
(υ)

∂υ(j)
H>

=

∑
[−z(:,e),ᵀH

∂Pf
(υ)

∂υ(j)
H>S−2

(υ)HPf
(υ)H

>S−1
(υ)z

(:,e)

=

∑
[−H

∂K(υ)

∂υ(j)
z(:,e)

]
=+β(j)− (α(j)− 1)

1
υ(j)

, (23)

∂K(υ)

∂υ(j)
=
∂Pf

(υ)

∂υ(j)
H>S−1

(υ)

=−Pf
(υ)H

>H
∂Pf

(υ)

∂υ(j)
H>S−2

(υ), (24)

where
∂Pf

(υ)

∂υ(j)
=

∂ρ(υ)

∂υ(j)
◦Pf. Calculation of the gradient (23) re-

quires computations only in observation space.
One will note that the form of our cost function (22) is

similar to that of other hybrid approaches (Bannister, 2017)
to data assimilation such as 3DEnVar (Hamill and Snyder,
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2000). As a lot of similar computation is done, this technique
could potentially be used as a preprocessing step in a larger
hybrid data assimilation scheme.

The choice of using the DEnKF is a bit arbitrary. From
the above, however, it is evident that a method that decou-
ples the anomaly updates from the mean updates would most
likely be more advantageous. A perturbed observation EnKF
does not have this property and thus would incur significantly
more computational effort in optimizing the cost function.
Extending this idea to a square-root filter, like the ETKF,
would require significant algebraic manipulation and heuris-
tics which are outside the scope of this paper.

4.2 Adaptive localization via a time-distributed cost
function

We now seek to extend the 3D-Var-like cost function (18)
to a time-dependent 4D-Var-like version. As the ensemble
is essentially a reduced-order model, we do not expect the
accuracy of the forecast to hold over the long term as we
might in traditional 4D-Var. We thereby propose a limited
extension of the cost function to include a small number K
of additional future times. Assuming that we are currently at
the ith time moment, the extended cost function reads as

Ji(υ)=
N∑
e=1

[
1
2

∥∥∥S−1
(υ),iz

(:,e)
i

∥∥∥2

HPf
(υ),iH>

=

∑
[+

1
2

∥∥∥g(:,e)(υ),i

∥∥∥2

R−1
i

=

∑
[+

K∑
k=1

1
2

∥∥∥yi+k −Hxf,(:,e)(υ),i+k

∥∥∥2

R−1
i+k

]

=+

g∑
j=1

(
β
(j)
i υ(j)−

(
α
(j)
i − 1

)
log

(
υ(j)

))
. (25)

One will notice that in the 4-D part of the cost function the fu-
ture forecasts are now dependent on υ as they are obtained by
running the model from xa

i,(υ). Similar to some 4-D ensem-
ble approaches, the gradient computations can be approxi-
mated by the tangent linear model with the adjoint not being
required. In fact all that is required is matrix vector products
which can be approximated with finite differences (Tranquilli
et al., 2017).

Various 4-D-type approximation strategies are also appli-
cable to this cost function extension, though they are outside
of the scope of this paper.

4.3 Algorithm

In practice, instead of dealing with the Gamma distribution
parameters of α and β, we use the parameters ῡ and Var(υ),
such that α = ῡ2

Var(υ) and β = ῡ
Var(υ) . For the sake of simplic-

ity we assume that all υ are identically distributed, but this is
not required for the algorithm to function. The initial guess

for our minimization procedure is the vector of means. Af-
ter minimizing the cost function, the radii for different com-
ponents will be different. These radii, along with the corre-
sponding localization and m functions, are used to build the
localization matrix ρ. An outline is presented in Algorithm 1.

5 Numerical experiments and results

In order to validate our methodology, we carry out twin ex-
periments under the assumption of identical perfect dynam-
ical systems for both the truth and the model. The analysis
accuracy is measured by the spatio-temporally averaged root
mean square error:

RMSE=

√√√√ 1
n · nt

nt∑
i=1

n∑
j=1

(
[xt
i]j − [x̄

a
i ]j

)2
, (26)

where nt is the number of data assimilation cycles (the num-
ber of analysis steps).

For each of the models we repeat the experiments with
different values of the inflation constant α and report the best
(minimal RMSE) results.

All initial value problems used were independently imple-
mented (Roberts et al., 2019).

5.1 Oracles

We will make use of oracles to empirically evaluate the per-
formance of the multivariate approach to Schur-product lo-
calization. An oracle is an idealized procedure that produces
close to optimal results by making use of all the available
information, some of which is unknown to the data assimila-
tion system. In our case the oracle minimizes cost functions
involving the true model state. Specifically, in an ideal filter-
ing scenario one seeks to minimize the error of the analysis
with respect to the truth, i.e., the cost function,

J (xa)= RMSE(xa
− xt). (27)

Our oracle will pick the best parameters, in this case the radii,
that minimize an ideal cost function J (υ)= RMSE(x̄a

(υ)−
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xt). This can be viewed as an ideal variance minimization of
the state space in parameter space.

5.2 Lorenz’96

The 40-variable Lorenz model (Lorenz, 1996; Lorenz and
Emanuel, 1998) is the first standard test employed. This
problem is widely used in the testing of data assimilation al-
gorithms.

5.2.1 Model setup

The Lorenz’96 model equations,

dxi
dt
= (xi+1− xi−2)xi−1− xi +F, i = 1, . . .n, (28)

are obtained through a coarse discretization of a forced
Burger equation with Newtonian damping (Reich and Cot-
ter, 2015). We impose x0 = xn, x−1 = xn−1, and xn+1 = x1,
where n= 40. We take the canonical value for the exter-
nal forcing factor, F = 8. Using known techniques for dy-
namical systems (Parker and Chua, 2012), one can approx-
imately compute that this particular system has 13 positive
Lyapunov exponents (Strogatz, 2014) and 1 zero exponent,
with a Kaplan–Yorke dimension of approximately 27.1.

The initial conditions used for the experiments are ob-
tained by starting with

[x0]i =

{
8 i 6= 20
8.008 i = 20 (29)

and integrating Eq. (28) forward for 1 time unit in order to
reach the attractor.

The physical distance between xi and xj is the shortest
cyclic distance between any two state variables:

d(i,j)=min{‖i− j‖,‖n+ i− j‖,‖n+ j − i‖}, (30)

where the distance between two neighbors is 1.
For the numerical experiments, we consider a perfect

model and noisy observations. We take a 6 h assimilation
window (corresponding to 1tobs = 0.05 model time units)
and calculate the RMSE on the assimilation cycle interval
[100,1100] in the case of oracle testing or [5000,55000]
in the case of adaptive localization testing. Lorenz’96 is an
ergodic system (Fatkullin and Vanden-Eijnden, 2004), and
therefore its behavior in time for most initial conditions is
the same as the behavior of all its possible phase spaces on
any orbit around a strange attractor at any point in time,
meaning that a long enough time averaged run should be
the same as a collection of shorter space-averaged runs. We
use 10 ensemble members (just under the number of pos-
itive Lyapunov exponents) and observe the 30 model vari-
ables (2,4, . . .,18,20,21, . . .,39,40), with an observation er-
ror variance of 1 for each observed state.

Figure 1. Generalized mean oracles for Lorenz’96. Comparison of
the various m-based multivariate localization techniques with that
of standard univariate localization and constant “best radius” local-
ization. Results were obtained using the Lorenz’96 model over the
assimilation cycles [100,1100] and were run for various values of
the inflation parameter.

5.2.2 Oracle results

Figure 1 shows a visualization of multivariate oracle runs
for the Lorenz’96 test problem using the best constant ra-
dius, a univariate oracle, and a multivariate oracle utilizing
the m functions from Eq. (10a). The constant “best” radius
was chosen on an individual basis for every value of the in-
flation parameter, while the univariate and multivariate cases
were allowed to minimize Eq. (27) for a single global ra-
dius and for 40 local radii, respectively. This means that
in the multivariate case each of the 40 variables is given
an independent radius. As one can see, the univariate ora-
cle performs no better than a constant radius, while several
of the multivariate approaches provide much better results.
The schemes (Eq. 10a) that closely mirror an unbiased mean,
namely mmean, msqrt, mrms, and mharm, yield the best results,
while the conservative scheme mmin performs no better than
a univariate approach. This indicates that the problem is bet-
ter suited for multivariate localization. Mostm functions per-
form similarly, and in further experiments we will only con-
sider mmean as a representative and easy-to-implement op-
tion. We note that for Lorenz’96 with DEnKF and our experi-
mental setup, no 3-D univariate adaptive localization scheme
which aims for the analysis estimate to optimally approach
the truth outperforms the best constant localization radius.

We also test both the validity of arbitrarily grouping the
radii and the validity of using a time-distributed cost func-
tion (Eq. 25). Figure 2 presents results for arbitrary radii
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Figure 2. Time-dependent 4-D oracle for Lorenz’96. Comparison
of the RMSE for a radius oracle that is both multivariate and time-
dependent. The y axis represents the number of independent radii
values (groups of the model state components). The assimilation
cycle interval is [100,1100]; a fixed inflation value of α = 1.02 and
the function mmean are used.

groupings and for a limited run 4-D approach. The results
were calculated with arbitrary choices of radii groupings
such that each group would contain an equal number of vari-
ables, and with the fixed inflation value of α = 1.02 with the
function mmean. There is significant benefit in using more
radii groupings, but marginal benefit from the 4-D approach.

5.2.3 Adaptive localization results

Adaptive localization results for Lorenz’96 are shown in
Fig. 3. The optimal constant localization radius was found
and a search of possible input mean and variance values was
performed around it for the adaptive case. The value of ῡ
was varied by additive factors of one of−1,−0.5,+0,+0.5,
or +1 with respect to the best univariate radius with Var(υ)
chosen to be one of 1/8, 1/4, 1/2, 1, or 2. As accurately pre-
dicted by the oracle results, a univariate adaptive approach
for this model cannot do better than the best univariate radius
(Fig. 1), as no meaningful reduction in error was detected.

5.3 Multivariate Lorenz’96

The canonical Lorenz’96 model is ill suited for multivariate
adaptive localization as each variable in the problem behaves
identically to all the others. This means that for any univari-
ate localization scheme a constant radius is close to optimal.

5.3.1 Model setup

We modify the problem in such a way that the average behav-
ior remains very similar to that of the original model, but that

Figure 3. Lorenz’96 adaptive localization results. Comparison of
the best univariate localization radius results with their correspond-
ing adaptive localization counterparts. ῡ was varied by additive fac-
tors of one of −1, −0.5, +0, +0.5, or +1 with respect to the best
univariate radius, with Var(υ) chosen to be one of 1/8, 1/4, 1/2, 1,
or 2.

instantaneous behavior requires different localization radii.
In order to accomplish this we use the time-dependent forc-
ing function that is different for each variable:

[F (t)]i = 8+ 4cos
(
ω
(
t +

(i− 1)modq
q

))
, (31)

whereω = 2π (in the context of Lorenz’96 the equivalent pe-
riod is 5 d), i is the variable index, and q is an integer factor of
n. Here we set q = 4. The different forcing values will create
differences between the dynamics of different variables.

For each individual variable the forcing value cycles be-
tween 4 and 12, with an average value of 8, just like in the
canonical Lorenz’96 formulation. If taken to be a constant,
the forcing factor of 4 will make the equation lightly chaotic
with only one positive Lyapunov exponent, whilst a constant
value of 12 will make the dynamics have about 15 positive
Lyapunov exponents. Our modified system still has the same
average behavior with 13 positive Lyapunov exponents. The
mean doubling times of the two problems are also extremely
similar at around 0.36. This is the ideal desired behavior.
Figure 4 shows a comparison of numerically computed co-
variance matrices for this modified problem. There is con-
siderable difference between the size of non-diagonal entries
for different state variables over the course of a single step,
but this difference disappears after averaging. This indicates
that for this problem the best constant univariate radius is
the same as for the canonical Lorenz’96 model but that in-
stantaneous adaptive radii are different. This shows that an
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Figure 4. Calculated optimal single-time and time-averaged covariance matrices for the multivariate Lorenz’96 model. Comparison of
ensemble covariance matrices for the multivariate Lorenz’96 equations for a single time step (a) with that for a time-averaged run (b) for
100 000 and 10 000 ensemble members, respectively.

adaptive approach to the instantaneous covariance could be
advantageous.

Error measurements will be carried out over the interval
[500,5500], with the omitted steps acting as spinup. The
rest of the problem setup is identical to that of the canoni-
cal Lorenz’96.

5.3.2 Adaptive localization results

Figure 5 shows results with the multivariate Lorenz’96
model, with g = q = 4 radii groups and the 4-D parameter
set to K = 1. The inflation is kept constant for each exper-
iment, with multiple experiments spanning α ∈ [1.02,1.1].
The localization radius is varied in increments of 0.5 over
the range [0.5,16] for the constant case. The corresponding
minimal-error radii are used as mean inputs into our adap-
tive algorithm. For the adaptive case we choose four arbitrary
groupings of radii (g = 4) with the mean functionmmean. The
parameters ῡ take one of three possible values, the optimal
constant radius−1,+0, and+1. The parameters Var(υ) take
one value from {1/4,1,4}. The 4-D variable is set to K = 1
to look at an additional observation in the future.

As before, the results for the constant radius were their op-
timal value for each given inflation value, while the adaptive
results were obtained through a search for possible means
and variances around that value. The largest reduction in er-
ror is only about 8 %; however, this is a significant improve-
ment over the behavior of the univariate Lorenz’96. In the
canonical Lorenz’96 there is no meaningful choice of group-
ing other than arbitrary, but in this case, the groups were cho-
sen such that all related variables have the same forcing from
Eq. (31). The results show a significant improvement over the
univariate case, especially for low inflation values. We note
that the filter spinup takes significantly longer for the adap-
tive localization case than for the constant univariate case.

Figure 5. Time-dependent multivariate Lorenz’96 4-D adaptive lo-
calization. The constant radius case shows the minimal error when
the localization radius is varied between set predefined values. The
adaptive localization case has four radii groupings, g = q = 4, with
the time-dependence parameter,K = 1. The parameters ῡ were var-
ied by −1, +0, and +1 from the best constant radius. The parame-
ters Var(υ) take one value from {1/4,1,4}.

Consequently, the assimilation cycles are chosen in the time
interval [500,5500] units. An idea to mitigate this might be
to run the filter with a constant radius for a few assimilation
cycles before switching to the adaptive localization strategy,
so as to allow the filter to quickly catch up with the shadow
attractor trajectory.
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Figure 6. ML96 sample radii. Radii for the configuration in Fig. 5
with α = 1.02, ῡ = 6, and Var(υ)= 1. Each unique marker type
represents a unique radius grouping with a red · representing the
first group, a green · representing the second, a blue · representing
the third, and a black · representing the fourth. Groups 2 and 4 con-
tain variables that were observed fully, and groups 1 and 3 contain
variables that were observed partially. The graph has been truncated
to only show radii from 3 to 9 in order to better capture the general
tendencies.

Figure 6 demonstrates a sampling of the radii obtained
through the adaptive 4-D multivariate method. Taking g =
q = 4, α = 1.02, ῡ = 6, Var(υ)= 1, and K = 1, we look
at the radii generated by our method. For the post-spinup
case, the means (5.8449, 5.8669, 5.8441, 5.8602) of the radii
for each grouping are fairly similar; however, the variances
(0.0300, 0.0731, 0.0295, 0.0821) differ wildly. The group-
ings with less observations, groups 1 and 3, have much more
conservative variances, while groups 3 and 4, which are ob-
served fully, have much greater variances.

This gives us insight into a potential way of choosing mul-
tivariate localization groups. Based on some measure of the
observability of any given state-space variable, similarly “ob-
servable” state-space variables should have similar radii.

Tightly coupled models like the multivariate Lorenz’96
have rapidly diverging solutions, and constraining them re-
quires more information about the underlying dynamics. In-
corporating future observations and adding degrees of free-
dom to the cost function increase the performance of our
analysis. In the limiting case of one radius per variable and
general information from the future one approaches a vari-
ant of 4DenVar, which is in principle superior to any pure
filtering method.

5.4 Quasi-geostrophic model (QGSO)

The 1.5-layer quasi-geostrophic model of Sakov
and Oke (Sakov and Oke, 2008), obtained by non-
dimensionalizing potential vorticity, is given by the
equations

qt =−ψx − εJ (ψ,q)−A4
3ψ + 2π sin(2πy),

4ψ −Fψ = q, J (ψ,q)≡ ψxqy −ψyqx . (32)

The variable ψ can be thought of as the stream function,
and the spatial domain is the square (x,y) ∈ [0,1]2. The con-
stants are F = 1600, ε = 10−5, and A= 2× 10−11. We use
homogeneous Dirichlet boundary conditions.

A second-order central finite difference spatial discretiza-
tion of the Laplacian operator 4 is performed over the in-
terior of a 129× 129 grid, leading to a model dimension
n= 1272

= 16129. The time discretization is the canonical
fourth-order explicit Runge–Kutta method with a time step of
1 time unit. The Helmholtz equation on the right-hand side
of Eq. (32) is solved by an offline pivoted sparse Cholesky
decomposition. J is calculated via the canonical Arakawa ap-
proximation (Arakawa, 1966; Ferguson, 2008). The 43 op-
erator is implemented by repeated application of our discrete
Laplacian.

The time between consecutive observations is 5 time units,
and the model is run for 3300 such cycles. The first 300 cy-
cles, corresponding to the filter spinup, are discarded, and
therefore the assimilation interval is [300,3300] time units.
Observations are performed with a standard 300-component
observation operator as shown in Fig. 7. An observation er-
ror variance of 4 is taken for each component. The physical
distance between two components is defined as

d(i,j)=

√
(ix − jx)2+ (iy − jy)2, (33)

with (ix, iy) and (jx,jy) the spatial grid coordinates of the
state-space variables i and j , respectively.

Our rough estimate of the number of positive Lyapunov
exponents of this model is 1451, with a Kaplan–Yorke di-
mension estimate of 6573.4; thus, we will take a conservative
25 ensemble members whose initial states are derived from a
random sampling of a long run of the model.

This model has been tested extensively with both the
DEnKF and various localization techniques (Sakov and
Bertino, 2011; Bergemann and Reich, 2010; Moosavi et al.,
2018).

Adaptive localization results

The adaptive localization results for the quasi-geostrophic
problem are shown in Fig. 8. As before, a constant best uni-
variate localization radius was calculated (iteratively taken
in increments of 5 over the range [5,45]) for each inflation
value (α ∈ [1.02,1.16]), and was used as a seed for varying
the results in the adaptive case. For the adaptive case we vary
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Figure 7. Quasi-geostrophic model. A typical model state of the 1.5-layer quasi-geostrophic model. (a) shows the stream function values,
with the red dots representing the locations of the variables that are observed. (b) shows the corresponding vorticity.

the parameters ῡ by taking one of three possible values, dif-
fering from the optimal constant radius by −5, 0, and +5.
The adaptive Var(υ) takes one of the values 1/2, 1, 2, or 4.
An improvement of RMSE of up to about 33 % can be seen
for certain inflation values, meaning that the adaptive local-
ization procedure results in significant reductions in analysis
error, while for other values no significant benefits are ob-
served.

A better representation of how well the adaptive localiza-
tion scheme works is by showing its consistency. The em-
pirical utility of the adaptive localization technique is further
analyzed in Fig. 9, which compares the error results of a sub-
optimal constant radius with that of an adaptive run with the
mean parameter set to the same values as the constant ones.
The adaptive results are – except in a few cases of filter di-
vergence – always as good as or better than their constant lo-
calization counterparts, with a reduction in error as large as
33 % with the same mean radius as the constant radius, and
as much as 50 % with different radii. Even in the case where
the adaptive filter diverged, the constant localization filter di-
verged as well. This indicates that our localization scheme
is significantly better than a corresponding sub-optimal con-
stant scheme with the same parameters, as is typically the
case in real-world production codes. This opens up the pos-
sibility of adapting existing systems that use a conservative
suboptimal constant localization to an adaptive localization
scheme.

Figure 10 shows a sample of the radii obtained by the
adaptive algorithm. One will notice that during the spinup
time the algorithm is much more conservative, with the ra-
dius of influence signaling that there should be an over-
reliance on the observations instead of the model prior. After
the spinup time however, the algorithm tends to select radii
greater than the mean, signifying a greater confidence in the
observations.

Figure 8. Quasi-geostrophic model adaptive localization. The in-
flation factor is kept constant, and α values from 1.02 to 1.16 are
represented on the x axis. The constant localization radius varies
in increments of 5 over the range [5,45]. Only the best results are
plotted, and they are used as the mean seeds for the adaptive algo-
rithm. For the adaptive case we vary the parameters ῡ by taking one
of three possible values, differing from the optimal constant radius
by −5, 0, and +5. The adaptive Var(υ) takes one of the values 1/2,
1, 2, and 4.

6 Conclusions

This paper proposes a novel Bayesian approach to adaptive
Schur-product-based localization. A multivariate approach is
developed, where multiple radii corresponding to different
types of variables are taken into account. The Bayesian prob-
lem is solved by constructing 3-D and 4-D cost functions and
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Figure 9. Quasi-geostrophic model adaptive localization raw
RMSE. The green line represents the same optimal constant local-
ization radius as in Fig. 8. The red line represents the error for the
radius −5 units below, and the blue line, if it had not experienced
filter divergence, would have represented +5. The correspondingly
colored areas represent the ranges of error of the adaptive local-
ization scheme obtained by fixing the mean, ῡ, to be that of the
constant scheme and ranging over the variance.

Figure 10. QGSO sample radii. For the configuration in Fig. 8 with
α = 1.08, ῡ = 25, and Var(υ)= 4. Each dot represents a radius,
with the line representing the mean.

minimizing them to obtain the maximum a posteriori esti-
mates of the localization radii. We show that in the case of the
DEnKF these cost functions and their gradients are compu-
tationally inexpensive to evaluate and can be relatively easily
implemented within existing frameworks. We provide a new
approach for assessing the performance of adaptive localiza-
tion approaches through the use of restricted cost function
oracles.

The adaptive localization approach is tested using the
Lorenz’96 and quasi-geostrophic models. Somewhat surpris-
ingly, the adaptivity produces better results for the larger
quasi-geostrophic problem. This may be due to the en-
semble analysis anomaly independence assumption made in
Sect. 4.1, an assumption that holds better for a large system
with sparse observations than for a small tightly coupled sys-
tem with dense observations. The performance of the adap-
tive approach on the small, coupled Lorenz’96 system is in-
creased by using multivariate and 4-D extensions of the cost
function. The approach yields modest gains of about an 8 %
reduction in error, but more importantly shows empirical ev-
idence for a quite intuitive observation that variables that are
more strongly observed can accept a greater variance of lo-
calization radii and can be less conservative with their radii
choices.

We believe that the algorithm presented herein has a strong
potential to improve existing geophysical data assimilation
systems that use ensemble-based filters such as the DEnKF.
In order to avoid filter divergence in the long term, these sys-
tems often use a conservative localization radius and a liberal
inflation factor. The QG model results indicate that, in such
cases, our adaptive method outperforms the approach based
on a constant localization. The approach leads to a reduction
of as much as 33 % in error. For a severely undersampled en-
semble, the approach appears to improve the quality of the
analysis substantially, potentially because the need for local-
ization is significantly greater than for a small toy problem
like L96. The new adaptive methodology can replace the ex-
isting approach with a relatively modest implementation ef-
fort.

Future work to extend the methodology includes finding
good approximations of the probability distribution of the lo-
calization parameters, perhaps through a machine learning
approach, and reducing the need for assumption that the en-
semble members are independent identically distributed ran-
dom variables. A future direction of interest is applying this
methodology to a larger operational model, e.g., the Weather
Research and Forecasting Model (WRF) (Skamarock et al.,
2008), which is computationally feasible in the short term.
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Attia, A., Ştefănescu, R., and Sandu, A.: The reduced-order hybrid
Monte Carlo sampling smoother, Int. J. Numer. Meth. Fl., 83,
28–51, 2017.

Bannister, R.: A review of operational methods of variational and
ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc.,
143, 607–633, 2017.

Bergemann, K. and Reich, S.: A localization technique for ensemble
Kalman filters, Q. J. Roy. Meteor. Soc., 136, 701–707, 2010.

Bickel, P. J. and Levina, E.: Regularized estimation of large covari-
ance matrices, Ann. Stat., 36, 199–227, 2008.

Bishop, C. H. and Hodyss, D.: Flow-adaptive moderation of spu-
rious ensemble correlations and its use in ensemble-based data
assimilation, Q. J. Roy. Meteor. Soc., 133, 2029–2044, 2007.

Bishop, C. H. and Hodyss, D.: Adaptive ensemble covariance lo-
calization in ensemble 4D-VAR state estimation, Mon. Weather
Rev., 139, 1241–1255, 2011.

Buehner, M. and Shlyaeva, A.: Scale-dependent background-
error covariance localisation, Tellus A, 67, 28027,
https://doi.org/10.3402/tellusa.v67.28027, 2015.

Carmichael, G., Chai, T., Sandu, A., Constantinescu,
E., and Daescu, D.: Predicting air quality: improve-
ments through advanced methods to integrate models
and measurements, J. Comput. Phys., 227, 3540–3571,
https://doi.org/10.1016/j.jcp.2007.02.024, 2008.

Constantinescu, E., Sandu, A., Chai, T., and Carmichael, G.:
Ensemble-based chemical data assimilation. II: Covariance
localization, Q. J. Roy. Meteor. Soc., 133, 1245–1256,
https://doi.org/10.1002/qj.77, 2007a.

Constantinescu, E., Sandu, A., Chai, T., and Carmichael,
G.: Ensemble-based chemical data assimilation. I: Gen-
eral approach, Q. J. Roy. Meteor. Soc., 133, 1229–1243,
https://doi.org/10.1002/qj.76, 2007b.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res.-Oceans, 99, 10143–10162, 1994.

Evensen, G.: Data assimilation: the ensemble Kalman filter,
Springer Science & Business Media, 2009.

Fatkullin, I. and Vanden-Eijnden, E.: A computational strategy for
multiscale systems with applications to Lorenz 96 model, J.
Comput. Phys., 200, 605–638, 2004.

Ferguson, J.: A numerical solution for the barotropic vorticity equa-
tion forced by an equatorially trapped wave, Master’s thesis, Uni-
versity of Victoria, 2008.

Flowerdew, J.: Towards a theory of optimal localisation, Tellus A,
67, 25257, https://doi.org/10.3402/tellusa.v67.25257, 2015.

Gaspari, G. and Cohn, S. E.: Construction of correlation functions
in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–
757, 1999.

Gneiting, T.: Compactly supported correlation functions, J. Multi-
variate Anal., 83, 493–508, 2002.

Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman filter–
3D variational analysis scheme, Mon. Weather Rev., 128, 2905–
2919, 2000.

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble
Kalman filter for atmospheric data assimilation, Mon. Weather
Rev., 129, 123–137, 2001.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data as-
similation for spatiotemporal chaos: A local ensemble transform
Kalman filter, Physica D, 230, 112–126, 2007.

Kalnay, E.: Atmospheric modeling, data assimilation and pre-
dictability, Cambridge University Press, Cambridge, UK, 2003.

Kirchgessner, P., Nerger, L., and Bunse-Gerstner, A.: On the choice
of an optimal localization radius in ensemble Kalman filter meth-
ods, Mon. Weather Rev., 142, 2165–2175, 2014.

Law, K., Stuart, A., and Zygalakis, K.: Data assimilation: a mathe-
matical introduction, vol. 62, Springer, Cham, Switzerland, 2015.

Le Dimet, F.-X. and Talagrand, O.: Variational algorithms for anal-
ysis and assimilation of meteorological observations: theoretical
aspects, Tellus A, 38, 97–110, 1986.

www.nonlin-processes-geophys.net/26/109/2019/ Nonlin. Processes Geophys., 26, 109–122, 2019

https://doi.org/10.3402/tellusa.v67.28027
https://doi.org/10.1016/j.jcp.2007.02.024
https://doi.org/10.1002/qj.77
https://doi.org/10.1002/qj.76
https://doi.org/10.3402/tellusa.v67.25257


122 A. A. Popov and A. Sandu: A Bayesian approach to multivariate adaptive localization

Lorenz, E. N.: Predictability: A problem partly solved, in: Proc.
Seminar on predictability, vol. 1, 1996.

Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary
weather observations: Simulation with a small model, J. Atmos.
Sci., 55, 399–414, 1998.

Ménétrier, B., Montmerle, T., Michel, Y., and Berre, L.: Linear fil-
tering of sample covariances for ensemble-based data assimila-
tion. Part I: Optimality criteria and application to variance filter-
ing and covariance localization, Mon. Weather Rev., 143, 1622–
1643, 2015.

Moosavi, A., Attia, A., and Sandu, A.: A Machine Learning Ap-
proach to Adaptive Covariance Localization, ArXiv e-prints,
2018.

Nino-Ruiz, E. D., Sandu, A., and Deng, X.: A parallel ensemble
Kalman filter implementation based on modified Cholesky de-
composition, in: Proceedings of the 6th Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems, p. 4,
ACM, Austin, Texas, 2015.

Parker, T. S. and Chua, L.: Practical numerical algorithms for
chaotic systems, Springer Science & Business Media, New York,
NY, USA, 2012.

Petrie, R.: Localization in the ensemble Kalman filter, MSc At-
mosphere, Ocean and Climate University of Reading, Reading,
USA, 2008.

Petrie, R. E. and Dance, S. L.: Ensemble-based data assimilation
and the localisation problem, Weather, 65, 65–69, 2010.

Porcu, E., Daley, D. J., Buhmann, M., and Bevilacqua, M.: Radial
basis functions with compact support for multivariate geostatis-
tics, Stoch. Env. Res. Risk A., 27, 909–922, 2013.

Reich, S. and Cotter, C.: Probabilistic forecasting and Bayesian
data assimilation, Cambridge University Press, Cambridge, UK,
2015.

Roberts, S., Popov, A. A., and Sandu, A.: ODE Test Problems:
a MATLAB suite of initial value problems, arXiv preprint
arXiv:1901.04098, 2019.

Roh, S., Jun, M., Szunyogh, I., and Genton, M. G.: Multivariate lo-
calization methods for ensemble Kalman filtering, Nonlin. Pro-
cesses Geophys., 22, 723–735, https://doi.org/10.5194/npg-22-
723-2015, 2015.

Sakov, P. and Bertino, L.: Relation between two common localisa-
tion methods for the EnKF, Comput. Geosci., 15, 225–237, 2011.

Sakov, P. and Oke, P. R.: A deterministic formulation of the ensem-
ble Kalman filter: an alternative to ensemble square root filters,
Tellus A, 60, 361–371, 2008.

Sandu, A., Daescu, D., Carmichael, G., and Chai, T.: Adjoint sen-
sitivity analysis of regional air quality models, J. Comput. Phys.,
204, 222–252, https://doi.org/10.1016/j.jcp.2004.10.011, 2005.

Schur, J.: Bemerkungen zur Theorie der beschränkten Bilinearfor-
men mit unendlich vielen Veränderlichen., Journal für die reine
und angewandte Mathematik, 140, 1–28, 1911.

Singh, V. P., Rajagopal, A., and Singh, K.: Derivation of some fre-
quency distributions using the principle of maximum entropy
(POME), Adv. Water Resour., 9, 91–106, 1986.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Duda, M. G., Huang, X., Wang, W., and Powers, J. G.: A
description of the advanced research WRF version 3, Tech. rep.,
National Center For Atmospheric Research, 2008.

Strogatz, S. H.: Nonlinear dynamics and chaos: with applications
to physics, biology, chemistry, and engineering, Westview Press,
Boulder, CO, 2014.

Tranquilli, P., Glandon, S. R., Sarshar, A., and Sandu, A.: Analytical
Jacobian-vector products for the matrix-free time integration of
partial differential equations, J. Comput. Appl. Math., 310, 213–
223, 2017.

Van Leeuwen, P. J., Cheng, Y., and Reich, S.: Nonlinear data assim-
ilation, vol. 2, Springer, Cham, Switzerland, 2015.

Zupanski, M.: Maximum likelihood ensemble filter: Theoretical as-
pects, Mon. Weather Rev., 133, 1710–1726, 2005.

Nonlin. Processes Geophys., 26, 109–122, 2019 www.nonlin-processes-geophys.net/26/109/2019/

https://doi.org/10.5194/npg-22-723-2015
https://doi.org/10.5194/npg-22-723-2015
https://doi.org/10.1016/j.jcp.2004.10.011

	Abstract
	Introduction
	Background
	Kalman analysis
	Schur-product localization

	Extension to multivariate localization functions
	Bayesian approach
	Solving the optimization problem
	Adaptive localization via a time-distributed cost function
	Algorithm

	Numerical experiments and results
	Oracles
	Lorenz'96
	Model setup
	Oracle results
	Adaptive localization results

	Multivariate Lorenz'96
	Model setup
	Adaptive localization results

	Quasi-geostrophic model (QGSO)

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

