Articles | Volume 25, issue 3
https://doi.org/10.5194/npg-25-633-2018
https://doi.org/10.5194/npg-25-633-2018
Research article
 | 
04 Sep 2018
Research article |  | 04 Sep 2018

Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error

Colin Grudzien, Alberto Carrassi, and Marc Bocquet

Related authors

A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022,https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
On the numerical integration of the Lorenz-96 model, with scalar additive noise, for benchmark twin experiments
Colin Grudzien, Marc Bocquet, and Alberto Carrassi
Geosci. Model Dev., 13, 1903–1924, https://doi.org/10.5194/gmd-13-1903-2020,https://doi.org/10.5194/gmd-13-1903-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Barreira, L. and Pesin, Y.: Lyapunov Exponents and Smooth Ergodic Theory, Student Mathematical Library, American Mathematical Society, 38–40, 2002.
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15, 9–20, 1980.
Bocquet, M.: Ensemble Kalman filtering without the intrinsic need for inflation, Nonlin. Processes Geophys., 18, 735–750, https://doi.org/10.5194/npg-18-735-2011, 2011.
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304 504, 2017.
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012, 2012.
Download
Short summary
Using the framework Lyapunov vectors, we analyze the asymptotic properties of ensemble based Kalman filters and how these are influenced by dynamical chaos, especially in the context of random model errors and small ensemble sizes. Particularly, we show a novel derivation of the evolution of forecast uncertainty for ensemble-based Kalman filters with weakly-nonlinear error growth, and discuss its impact for filter design in geophysical models.