Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 25, issue 3
Nonlin. Processes Geophys., 25, 633–648, 2018
https://doi.org/10.5194/npg-25-633-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 633–648, 2018
https://doi.org/10.5194/npg-25-633-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Sep 2018

Research article | 04 Sep 2018

Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error

Colin Grudzien et al.

Viewed

Total article views: 2,299 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,596 599 104 2,299 100 108
  • HTML: 1,596
  • PDF: 599
  • XML: 104
  • Total: 2,299
  • BibTeX: 100
  • EndNote: 108
Views and downloads (calculated since 08 Feb 2018)
Cumulative views and downloads (calculated since 08 Feb 2018)

Viewed (geographical distribution)

Total article views: 2,072 (including HTML, PDF, and XML) Thereof 2,059 with geography defined and 13 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 10 Aug 2020
Publications Copernicus
Download
Short summary
Using the framework Lyapunov vectors, we analyze the asymptotic properties of ensemble based Kalman filters and how these are influenced by dynamical chaos, especially in the context of random model errors and small ensemble sizes. Particularly, we show a novel derivation of the evolution of forecast uncertainty for ensemble-based Kalman filters with weakly-nonlinear error growth, and discuss its impact for filter design in geophysical models.
Using the framework Lyapunov vectors, we analyze the asymptotic properties of ensemble based...
Citation