Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 25, issue 3
Nonlin. Processes Geophys., 25, 605–631, 2018
https://doi.org/10.5194/npg-25-605-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 605–631, 2018
https://doi.org/10.5194/npg-25-605-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Aug 2018

Research article | 30 Aug 2018

Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model

Jonathan Demaeyer and Stéphane Vannitsem

Related authors

Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
Lesley De Cruz, Sebastian Schubert, Jonathan Demaeyer, Valerio Lucarini, and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-387-2018,https://doi.org/10.5194/npg-25-387-2018, 2018
Short summary
The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0
Lesley De Cruz, Jonathan Demaeyer, and Stéphane Vannitsem
Geosci. Model Dev., 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016,https://doi.org/10.5194/gmd-9-2793-2016, 2016
Short summary

Related subject area

Subject: Time Series, Complex Networks, Stochastic Processes, Extreme Events | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Simulation-based comparison of multivariate ensemble post-processing methods
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020,https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020,https://doi.org/10.5194/npg-27-261-2020, 2020
Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory
Julian Steinheuer and Petra Friederichs
Nonlin. Processes Geophys., 27, 239–252, https://doi.org/10.5194/npg-27-239-2020,https://doi.org/10.5194/npg-27-239-2020, 2020
Short summary
Applications of matrix factorization methods to climate data
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-7,https://doi.org/10.5194/npg-2020-7, 2020
Revised manuscript accepted for NPG
Short summary
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020,https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary

Cited articles

Abramov, R.: A simple stochastic parameterization for reduced models of multiscale dynamics, Fluids, 1, https://doi.org/10.3390/fluids1010002, 2015.
Arnold, H., Moroz, I., and Palmer, T.: Stochastic parametrizations and model uncertainty in the Lorenz'96 system, Philos. T. Roy. Soc. A, 371, https://doi.org/10.1098/rsta.2011.0479, 2013.
Arnold, L.: Hasselmann's program revisited: The analysis of stochasticity in deterministic climate models, in: Stochastic climate models, 141–157, Springer, 2001.
Arnold, L., Imkeller, P., and Wu, Y.: Reduction of deterministic coupled atmosphere–ocean models to stochastic ocean models: a numerical case study of the Lorenz–Maas system, Lect. Notes Math., 18, 295–350, 2003.
Publications Copernicus
Download
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.
We investigate the modeling of the effects of the unresolved scales on the large scales of the...
Citation