Articles | Volume 25, issue 3
https://doi.org/10.5194/npg-25-605-2018
https://doi.org/10.5194/npg-25-605-2018
Research article
 | 
30 Aug 2018
Research article |  | 30 Aug 2018

Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model

Jonathan Demaeyer and Stéphane Vannitsem

Related authors

Variability and predictability of a reduced-order land–atmosphere coupled model
Anupama K. Xavier, Jonathan Demaeyer, and Stéphane Vannitsem
Earth Syst. Dynam., 15, 893–912, https://doi.org/10.5194/esd-15-893-2024,https://doi.org/10.5194/esd-15-893-2024, 2024
Short summary
The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023,https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
Lesley De Cruz, Sebastian Schubert, Jonathan Demaeyer, Valerio Lucarini, and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-387-2018,https://doi.org/10.5194/npg-25-387-2018, 2018
Short summary
The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0
Lesley De Cruz, Jonathan Demaeyer, and Stéphane Vannitsem
Geosci. Model Dev., 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016,https://doi.org/10.5194/gmd-9-2793-2016, 2016
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Abramov, R.: A simple stochastic parameterization for reduced models of multiscale dynamics, Fluids, 1, https://doi.org/10.3390/fluids1010002, 2015.
Arnold, H., Moroz, I., and Palmer, T.: Stochastic parametrizations and model uncertainty in the Lorenz'96 system, Philos. T. Roy. Soc. A, 371, https://doi.org/10.1098/rsta.2011.0479, 2013.
Arnold, L.: Hasselmann's program revisited: The analysis of stochasticity in deterministic climate models, in: Stochastic climate models, 141–157, Springer, 2001.
Arnold, L., Imkeller, P., and Wu, Y.: Reduction of deterministic coupled atmosphere–ocean models to stochastic ocean models: a numerical case study of the Lorenz–Maas system, Lect. Notes Math., 18, 295–350, 2003.
Download
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.