Articles | Volume 25, issue 3
Nonlin. Processes Geophys., 25, 605–631, 2018
https://doi.org/10.5194/npg-25-605-2018

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 605–631, 2018
https://doi.org/10.5194/npg-25-605-2018

Research article 30 Aug 2018

Research article | 30 Aug 2018

Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model

Jonathan Demaeyer and Stéphane Vannitsem

Related authors

Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
Lesley De Cruz, Sebastian Schubert, Jonathan Demaeyer, Valerio Lucarini, and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-387-2018,https://doi.org/10.5194/npg-25-387-2018, 2018
Short summary
The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0
Lesley De Cruz, Jonathan Demaeyer, and Stéphane Vannitsem
Geosci. Model Dev., 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016,https://doi.org/10.5194/gmd-9-2793-2016, 2016
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
Jonathan M. Lilly and Paula Pérez-Brunius
Nonlin. Processes Geophys., 28, 181–212, https://doi.org/10.5194/npg-28-181-2021,https://doi.org/10.5194/npg-28-181-2021, 2021
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021,https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021,https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
Identification of Droughts and Heat Waves in Germany with Regional Climate Networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-46,https://doi.org/10.5194/npg-2020-46, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Abramov, R.: A simple stochastic parameterization for reduced models of multiscale dynamics, Fluids, 1, https://doi.org/10.3390/fluids1010002, 2015.
Arnold, H., Moroz, I., and Palmer, T.: Stochastic parametrizations and model uncertainty in the Lorenz'96 system, Philos. T. Roy. Soc. A, 371, https://doi.org/10.1098/rsta.2011.0479, 2013.
Arnold, L.: Hasselmann's program revisited: The analysis of stochasticity in deterministic climate models, in: Stochastic climate models, 141–157, Springer, 2001.
Arnold, L., Imkeller, P., and Wu, Y.: Reduction of deterministic coupled atmosphere–ocean models to stochastic ocean models: a numerical case study of the Lorenz–Maas system, Lect. Notes Math., 18, 295–350, 2003.
Download
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.