Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
NPG | Articles | Volume 25, issue 2
Nonlin. Processes Geophys., 25, 429–439, 2018
https://doi.org/10.5194/npg-25-429-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 429–439, 2018
https://doi.org/10.5194/npg-25-429-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Jun 2018

Research article | 21 Jun 2018

Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation

Victor Shutyaev et al.

Related authors

Toward the assimilation of images
F.-X. Le Dimet, I. Souopgui, O. Titaud, V. Shutyaev, and M. Y. Hussaini
Nonlin. Processes Geophys., 22, 15–32, https://doi.org/10.5194/npg-22-15-2015,https://doi.org/10.5194/npg-22-15-2015, 2015

Related subject area

Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020,https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Brief communication: Residence time of energy in the atmosphere
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020,https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020,https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary
Data-driven versus self-similar parameterizations for stochastic advection by Lie transport and location uncertainty
Valentin Resseguier, Wei Pan, and Baylor Fox-Kemper
Nonlin. Processes Geophys., 27, 209–234, https://doi.org/10.5194/npg-27-209-2020,https://doi.org/10.5194/npg-27-209-2020, 2020
Short summary

Cited articles

Agoshkov, V. I., Parmuzin, E. I., and Shutyaev, V. P.: Numerical algorithm of variational assimilation of the ocean surface temperature data, Comp. Math. Math. Phys., 48, 1371–1391, 2008. a, b, c, d, e, f
Agoshkov, V. I., Parmuzin, E. I., Zalesny, V. B., Shutyaev, V. P., Zakharova, N. B., and Gusev, A. V.: Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics, Russ. J. Numer. Anal. Math. Modelling, 30, 203–212, 2015. a
Agoshkov, V. I. and Sheloput, T. O.: The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with “liquid” boundaries, Russ. J. Numer. Anal. Math. Modelling, 32, 147–164, 2017. a
Alifanov, O. M., Artyukhin, E. A., and Rumyantsev, S. V.: Extreme Methods for Solving Ill-posed Problems with Applications to Inverse Heat Transfer Problems, Begell House Publishers, Danbury, USA, 1996. a
Baker, N. L. and Daley, R.: Observation and background adjoint sensitivity in the adaptive observation-targeting problem, Q. J. Roy. Meteorol. Soc., 126, 1431–1454, 2000. a
Publications Copernicus
Download
Short summary
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters of the model. The observation data, and hence the optimal solution, may contain uncertainties. A response function is considered as a functional of the optimal solution after assimilation. The sensitivity of the response function to the observation data is studied. The results are relevant for monitoring and prediction of sea and ocean states.
The problem of variational data assimilation for a nonlinear evolution model is formulated as an...
Citation