Articles | Volume 25, issue 2
Nonlin. Processes Geophys., 25, 429–439, 2018
https://doi.org/10.5194/npg-25-429-2018

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 429–439, 2018
https://doi.org/10.5194/npg-25-429-2018

Research article 21 Jun 2018

Research article | 21 Jun 2018

Sensitivity analysis with respect to observations in variational data assimilation for parameter estimation

Victor Shutyaev et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Victor Shutyaev on behalf of the Authors (18 Apr 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (20 Apr 2018) by Olivier Talagrand
RR by Anonymous Referee #2 (07 May 2018)
RR by Olivier Talagrand (14 May 2018)
ED: Publish subject to minor revisions (review by editor) (14 May 2018) by Olivier Talagrand
AR by Victor Shutyaev on behalf of the Authors (23 May 2018)  Author's response    Manuscript
ED: Publish as is (25 May 2018) by Olivier Talagrand
Download
Short summary
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters of the model. The observation data, and hence the optimal solution, may contain uncertainties. A response function is considered as a functional of the optimal solution after assimilation. The sensitivity of the response function to the observation data is studied. The results are relevant for monitoring and prediction of sea and ocean states.