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Abstract. The problem of variational data assimilation for a
nonlinear evolution model is formulated as an optimal con-
trol problem to find unknown parameters of the model. The
observation data, and hence the optimal solution, may con-
tain uncertainties. A response function is considered as a5

functional of the optimal solution after assimilation. Based
on the second-order adjoint techniques, the sensitivity ofthe
response function to the observation data is studied. The gra-
dient of the response function is related to the solution of
a non-standard problem involving the coupled system of di-10

rect and adjoint equations. The non-standard problem is stud-
ied, based on the Hessian of the original cost function. An
algorithm to compute the gradient of the response function
with respect to observations is presented. Numerical exam-
ple is given for variational data assimilation problem related15

to sea surface temperature for the Baltic Sea thermodynamics
model.

1 Introduction

The methods of data assimilation (DA) have become an im-
portant tool for analysis of complex physical phenomena in20

various fields of science and technology. These methods al-
low us to combine mathematical models, data resulting from
observations and a priori information. The problems of vari-
ational DA can be formulated as optimal control problems
(e.g. Lions, 1968; Le Dimet and Talagrand, 1986) to find un-25

known model parameters such as initial and/or boundary
conditions, right-hand sides in the model equations (forcing
terms), distributed coefficients, based on minimization ofthe

cost function related to observations. A necessary optimality
condition reduces an optimal control problem to an optimal-30

ity system which involves the model equations, the adjoint
problem, and input data functions. The optimal solution de-
pends on the observation data, and for future forecast it is
very important to study the sensitivity of the optimal solution
with respect to observation errors (Baker and Daley, 2000).35

The necessary optimality condition is related to the gra-
dient of the original cost function, thus to study the sen-
sitivity of the optimal solution, one should differentiate
the optimality system with respect to observations. In this
case, we come to the so-called second-order adjoint prob-40

lem (Le Dimet et al., 2002). The first studies of sensitivity
of the response functions after assimilation with the use of
second-order adjoint were done by Le Dimet et al. (1997) for
variational data assimilation problem aimed at restoration of
initial condition, where sensitivity with respect to model45

parameters was considered. The equations of the forecast
sensitivity to observations in a four-dimensional (4D-Var)
data assimilation were derived by Daescu (2008). Based on
these results, a practical computational approach was given
by Cioaca et al. (2013) to quantify the effect of observations 50

in 4D-Var data assimilation.
The issue of sensitivity is related to the statistical proper-

ties of the optimal solution (see Gejadze et al., 2008, 2011,
2013; Shutyaev et al., 2012). General sensitivity analysisin
variational data assimilation with respect to observations for 55

a nonlinear dynamic model was given by Shutyaev et al.
(2017) to control the initial-value function. The dynamic for-
mulation of the problem is important because it shows differ-
ent implementation options (Gejadze et al., 2018).
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This paper is based on the results of Shutyaev et al. (2017)
and presents the sensitivity analysis with respect to obser-
vations in variational data assimilation aimed at restoration
of unknown parameters of a dynamic model. We should
mention the importance of the parameter estimation prob-5

lem itself. A precise determination of the initial condition
is very important in view of forecasting, however the use
of variational data assimilation is not limited to operational
forecasting. In many domains (e.g. hydrology) the uncer-
tainty in the parameters is more crucial that the uncertainty10

in the initial condition (e.g. White at al., 2003). In some
problems the quantity of interest can be represented di-
rectly by the estimated parameters as controls. For exam-
ple, in Agoshkov et al. (2015) the sea surface heat flux is
estimated in order to understand its spatial and temporal15

variability. The problems of parameter estimation are com-
mon inverse problems considered in geophysics and in en-
gineering applications (see Alifanov et al., 1996; Sun, 1994;
Zhu and Navon, 1999; Storch et al., 2007). Last years an in-
terest is rising to the parameter estimation using 4D-Var20

(Bocquet, 2012; Schirber at al., 2013; Yuepeng et al., 2018;
Agoshkov and Sheloput, 2017).

We consider a dynamic formulation of variational data as-
similation problem for parameter estimation in a continuous
form, but the presented sensitivity analysis formulas withre-25

spect to observations do not follow from our previous results
for the initial condition problem (Shutyaev et al., 2017) and
constitute a novelty of this paper. Of course, the initial con-
dition function may be also considered as a parameter, how-
ever, in our dynamic formulation we have two equations for30

the model: one equation for describing an evolution of the
model operator (involving model parameters such as right-
hand sides, coefficients, boundary conditions etc.), and an-
other equation is considered as an initial condition.

This paper is organized as follows. In section 2, we give35

the statement of the variational DA problem for a nonlinear
evolution model to estimate the model parameters. In Section
3, sensitivity of the response function after assimilationwith
respect to observations is studied, and its gradient is related
to the solution of a non-standard problem. In Section 4 we40

derive an operator equation involving the Hessian to study
the solvability of the non-standard problem, and give an al-
gorithm to compute the gradient of the response function.
A proof-of-concept analytic example with a simple model is
given in Section 5 to demonstrate how the sensitivity analy-45

sis algorithm works. Section 6 presents an application of the
theory to the DA problem for a sea thermodynamics model.
Numerical examples are given in Section 7 for the Baltic Sea
dynamics model. The main results are discussed in the Con-
clusions.50

2 Statement of the problem

We consider the mathematical model of a physical process
that is described by the evolution problem

{
∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T )

ϕ
∣∣
t=0

= u,
(2.1)

where the initial stateu belongs to a Hilbert spaceX , ϕ= 55

ϕ(t) is the unknown function belonging toY = L2(0,T ;X)

with the norm‖ϕ‖Y = (ϕ,ϕ)
1/2
Y = (

∫ T

0
‖ϕ(t)‖2Xdt)

1/2,F is
a nonlinear operator mappingY × Yp into Y , Yp is a Hilbert
space (space of control parameters, or control space),f ∈ Y .
Suppose that for givenu ∈X,f ∈ Y andλ ∈ Yp there exists 60

a unique solutionϕ ∈ Y to (2.1) with ∂ϕ
∂t

∈ Y . The function
λ is an unknown model parameter.

Let us introduce the cost function

J(λ) =
1

2
(V1(λ−λb),λ−λb)Yp

+

+
1

2
(V2(Cϕ−ϕobs),Cϕ−ϕobs)Yobs

,

(2.2)

whereλb ∈ Yp is a prior (background) function,ϕobs ∈ Yobs 65

is a prescribed function (observational data),Yobs is a Hilbert
space (observation space),C : Y → Yobs is a linear bounded
observation operator,V1 : Yp → Yp andV2 : Yobs → Yobs are
symmetric positive definite bounded operators.

Let us consider the following data assimilation problem70

with the aim to estimate the parameterλ: for given u ∈
X,f ∈ Y , findλ ∈ Yp andϕ ∈ Y such that they satisfy (2.1),
and on the set of solutions to (2.1), the functionalJ(λ) takes
the minimum value, i.e.




∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T )

ϕ
∣∣
t=0

= u,
J(λ) = inf

v∈Yp

J(v).
(2.3) 75

We suppose that the solution of (2.3) exists. Let us note
that the solvability of the parameter estimation problems (or
identifiability) has been addressed, e.g., in Chavent (1983),
Navon (1998). To derive the optimality system, we assume
the solutionϕ and the operatorF (ϕ,λ) in (2.1)–(2.2) are
regular enough, and forv ∈ Yp find the gradient of the func-
tionalJ with respect toλ:

J ′(λ)v = (V1(λ−λb),v)Yp
+(V2(Cϕ−ϕobs),Cφ)Yobs

= (V1(λ−λb),v)Yp
+(C∗V2(Cϕ−ϕobs),φ)Y , (2.4)

whereφ is the solution to the problem:

{
∂φ
∂t

= F ′

ϕ(ϕ,λ)φ+F ′

λ(ϕ,λ)v,

φ
∣∣
t=0

= 0.
(2.5)
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HereF ′

ϕ(ϕ,λ) : Y → Y, F ′

λ(ϕ,λ) : Yp → Y are the Fréchet
derivatives ofF (Marchuk et al., 1996) with respect toϕ and
λ, correspondingly, andC∗ is the adjoint operator toC de-
fined by(Cϕ,ψ)Yobs

= (ϕ,C∗ψ)Y , ϕ ∈ Y,ψ ∈ Yobs.
Let us consider the adjoint operator(F ′

ϕ(ϕ,λ))
∗ : Y → Y5

and introduce the adjoint problem:

{
∂ϕ∗

∂t
+(F ′

ϕ(ϕ,λ))
∗ϕ∗ = C∗V2(Cϕ−ϕobs),

ϕ∗
∣∣
t=T

= 0.
(2.6)

Then (2.4) with (2.5) and (2.6) gives

J ′(λ)v = (V1(λ−λb),v)Yp
− (ϕ∗,F ′

λ(ϕ,λ)v)Y =

(V1(λ−λb),v)Yp
− ((F ′

λ(ϕ,λ))
∗ϕ∗,v)Yp

, (2.7)

where (F ′

λ(ϕ,λ))
∗ : Y → Yp is the adjoint operator to

F ′

λ(ϕ,λ). Therefore, the gradient ofJ is defined by

J ′(λ) = V1(λ−λb)− (F ′

λ(ϕ,λ))
∗ϕ∗.

From (2.4)–(2.7) we get the optimality system (the neces-10

sary optimality conditions, Lions, 1968):

{
∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T ),

ϕ
∣∣
t=0

= u,
(2.8)

{
∂ϕ∗

∂t
+(F ′

ϕ(ϕ,λ))
∗ϕ∗ = C∗V2(Cϕ−ϕobs),

ϕ∗
∣∣
t=T

= 0,
(2.9)

15

V1(λ−λb)− (F ′

λ(ϕ,λ))
∗ϕ∗ = 0. (2.10)

We assume that the system (2.8)–(2.10) has a unique
solution. The system (2.8)–(2.10) may be considered as a
generalized modelA(U) = 0 with the state variableU =
(ϕ,ϕ∗,λ), and it contains information about observations.20

In what follows we study the problem of the sensitivity of
functionals of the optimal solution to the observation data.

If the observation operatorC is nonlinear, i.e.Cϕ= C(ϕ),
then the right-hand side of the adjoint equation (2.9) contains
(C′

ϕ)
∗ instead ofC∗ and all the analysis presented below is25

similar.

3 Sensitivity of functionals after assimilation

In geophysical applications the observation data cannot be
measured precisely, therefore, it is important to be able to
estimate the impact of uncertainties in observations on the30

outputs of the model after assimilation.
Let us introduce a response functionG(ϕ,λ), which is

supposed to be a real-valued function and can be considered
as a functional onY ×Yp. We are interested in the sensitivity
of G with respect toϕobs, with ϕ andλ obtained from the35

optimality system (2.8)–(2.10). By definition, the sensitivity
is defined by the gradient ofG with respect toϕobs:

dG

dϕobs
=
∂G

∂ϕ

∂ϕ

∂ϕobs
+
∂G

∂λ

∂λ

∂ϕobs
. (3.1)

If δϕobs is a perturbation onϕobs, we get from the opti-
mality system: 40

{
∂δϕ
∂t

= F ′

ϕ(ϕ,λ)δϕ+F ′

λ(ϕ,λ)δλ,

δϕ
∣∣
t=0

= 0,
(3.2)





−
∂δϕ∗

∂t
− (F ′

ϕ(ϕ,λ))
∗δϕ∗ − (F ′′

ϕϕ(ϕ,λ)δϕ)
∗ϕ∗ =

= (F ′′

ϕλ(ϕ,λ)δλ)
∗ϕ∗ −C∗V2(Cδϕ− δϕobs),

δϕ∗
∣∣
t=T

= 0,

(3.3)

V1δλ − (F ′′

λϕ(ϕ,λ)δϕ)
∗ϕ∗ − (F ′′

λλ(ϕ,λ)δλ)
∗ϕ∗

− (F ′

λ(ϕ,λ))
∗δϕ∗ = 0,

(3.4) 45

and
(

dG

dϕobs
, δϕobs

)

Yobs

=

(
∂G

∂ϕ
,δϕ

)

Y

+

(
∂G

∂λ
,δλ

)

Yp

, (3.5)

whereδϕ, δϕ∗ andδλ are the Ĝateaux derivatives ofϕ, ϕ∗

andλ in the directionδϕobs (for example,δϕ= ∂ϕ
∂ϕobs

δϕobs).
To compute the gradient∇ϕobs

G(ϕ,λ), let us introduce
three adjoint variablesP1 ∈ Y , P2 ∈ Y andP3 ∈ Yp. By tak-
ing the inner product of (3.2) byP1, (3.3) byP2 and of (3.4)
byP3 and adding them, we obtain:

(
∂δϕ

∂t
−F ′

ϕ(ϕ,λ)δϕ−F ′

λ(ϕ,λ)δλ,P1

)

Y

+

+

(
−
∂δϕ∗

∂t
− (F ′

ϕ(ϕ,λ))
∗δϕ∗ − (F ′′

ϕϕ(ϕ,λ)δϕ)
∗ϕ∗−

−(F ′′

ϕλ(ϕ,λ)δλ)
∗ϕ∗ +C∗V2(Cδϕ− δϕobs),P2

)

Y

+

+

(
V1δλ− (F ′′

λϕ(ϕ,λ)δϕ)
∗ϕ∗ − (F ′′

λλ(ϕ,λ)δλ)
∗ϕ∗−

−(F ′

λ(ϕ,λ))
∗δϕ∗,P3

)

Yp

= 0.

Then, using integration by parts and adjoint operators, we get
(
δϕ,−

∂P1

∂t
− (F ′

ϕ(ϕ,λ))
∗P1 − (F ′′

ϕϕ(ϕ,λ)P2)
∗ϕ∗−

−(F ′′

λϕ(ϕ,λ)P3)
∗ϕ∗+C∗V2CP2

)

Y

+

(
δϕ
∣∣
t=T

,P1

∣∣
t=T

)

X

+
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+

(
δϕ∗,

∂P2

∂t
−F ′

ϕ(ϕ,λ)P2 −F ′

λ(ϕ,λ)P3

)

Y

+

+

(
δϕ∗

∣∣
t=0

,P2

∣∣
t=0

)

X

+

(
δλ,V1P3− (F ′′

ϕλ(ϕ,λ)P2)
∗ϕ∗−

−(F ′′

λλ(ϕ,λ)P3)
∗ϕ∗ − (F ′

λ(ϕ,λ))
∗P1

)

Yp

−

−

(
δϕobs,V2CP2

)

Yobs

= 0. (3.6)

Here we put

−
∂P1

∂t
− (F ′

ϕ(ϕ,λ))
∗P1 − (F ′′

ϕϕ(ϕ,λ)P2)
∗ϕ∗−

−(F ′′

λϕ(ϕ,λ)P3)
∗ϕ∗ +C∗V2CP2 =

∂G

∂ϕ
,

and

V1P3 − (F ′′

ϕλ(ϕ,λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ,λ)P3)
∗ϕ∗−

−(F ′

λ(ϕ,λ))
∗P1 =

∂G

∂λ
, P1

∣∣
t=T

= 0,

∂P2

∂t
−F ′

ϕ(ϕ,λ)P2 −F ′

λ(ϕ,λ)P3 = 0, P2

∣∣
t=0

= 0.

Thus, ifP1,P2,P3 are the solutions of the following system
of equations




−∂P1
∂t

− (F ′

ϕ(ϕ,λ))
∗P1 − (F ′′

ϕϕ(ϕ,λ)P2)
∗ϕ∗ =

= (F ′′

λϕ(ϕ,λ)P3)
∗ϕ∗ −C∗V2CP2 +

∂G
∂ϕ

,

P1

∣∣
t=T

= 0,

(3.7)5

{
∂P2
∂t

−F ′

ϕ(ϕ,λ)P2 −F ′

λ(ϕ,λ)P3 = 0, t ∈ (0,T )

P2

∣∣
t=0

= 0,

(3.8)

V1P3 − (F ′′

ϕλ(ϕ,λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ,λ)P3)
∗ϕ∗−

−(F ′

λ(ϕ,λ))
∗P1 =

∂G

∂λ
, (3.9)

then from (3.6) we get
(
∂G

∂ϕ
,δϕ

)

Y

+

(
∂G

∂λ
,δλ

)

Yp

=

(
δϕobs,V2CP2

)

Yobs

,

and due to (3.5) the gradient ofG is given by10

dG

dϕobs
= V2CP2. (3.10)

We get a coupled system of two differential equations (3.7)
and (3.8) of the first order with respect to time, and (3.9). To
study this non-standard problem (3.7)–(3.9), we reduce it to a
single operator equation involving the Hessian of the original15

cost function.

4 Operator equation via Hessian and response function
gradient

Let us denote the auxiliary variablev = P3 and rewrite the
non-standard problem (3.7)–(3.9) in an equivalent form: 20

{
∂P2
∂t

−F ′

ϕ(ϕ,λ)P2 = F ′

λ(ϕ,λ)v,

P2

∣∣
t=0

= 0,
(4.1)





−∂P1
∂t

− (F ′

ϕ(ϕ,λ))
∗P1 − (F ′′

ϕϕ(ϕ,λ)P2)
∗ϕ∗ =

= (F ′′

λϕ(ϕ,λ)v)
∗ϕ∗ −C∗V2CP2 +

∂G
∂ϕ

,

P1

∣∣
t=T

= 0,

(4.2)

V1v− (F ′′

ϕλ(ϕ,λ)P2)
∗ϕ∗ − (F ′′

λλ(ϕ,λ)v)
∗ϕ∗−

−(F ′

λ(ϕ,λ))
∗P1 =

∂G

∂λ
, (4.3) 25

Here we have three unknowns:v ∈ Yp, P1,P2 ∈ Y . Let us
write (4.1)–(4.3) in the form of an operator eqution forv. We
define the operatorH, which acts onw belonging toYp, by
the successive solution of the following problems:
{

∂φ
∂t −F ′

ϕ(ϕ,λ)φ = F ′

λ(ϕ,λ)w, t ∈ (0,T )

φ
∣∣
t=0

= 0,
(4.4) 30





−
∂φ∗

∂t
− (F ′

ϕ(ϕ,λ))
∗φ∗ − (F ′′

ϕϕ(ϕ,λ)φ)
∗ϕ∗ =

= (F ′′

λϕ(ϕ,λ)w)
∗ϕ∗ −C∗V2Cφ,

φ∗
∣∣
t=T

= 0,

(4.5)

Hw = V1w− (F ′′

ϕλ(ϕ,λ)φ)
∗ϕ∗−

−(F ′′

λλ(ϕ,λ)w)
∗ϕ∗ − (F ′

λ(ϕ,λ))
∗φ∗. (4.6)

Hereλ,ϕ andϕ∗ are the solutions of the optimality system35

(2.8)–(2.10). Then (4.1)–(4.3) is equivalent to the following
equation inYp:

Hv = F (4.7)

with the right-hand sideF defined by

F =
∂G

∂λ
+(F ′

λ(ϕ,λ))
∗φ̃∗, (4.8) 40

whereφ̃∗ is the solution to the adjoint problem:




−
∂φ̃∗

∂t
− (F ′

ϕ(ϕ,λ))
∗φ̃∗ = ∂G

∂ϕ
, t ∈ (0,T )

φ̃∗
∣∣
t=T

= 0.
(4.9)
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It is easily seen that the operatorH defined by (4.4)–(4.6)
is the Hessian of the original functionalJ considered on the
optimal solutionλ of the problem (2.8)–(2.10):J ′′(λ) =H.
Under the assumption thatH is positive definite, the oper-
ator equation (4.7) is correctly and everywhere solvable in
Yp (Vainberg, 1964), i.e. for everyF there exists a unique
solutionv ∈ Yp and

‖v‖Yp
≤ c‖F‖Yp

, c= const > 0.

Therefore, under the assumption thatJ ′′(λ) is positive
definite on the optimal solution, the non-standard problem
(3.7)–(3.9) has a unique solutionP1,P2 ∈ Y,P3 ∈ Yp.

Based on the above consideration, we can formulate the
following algorithm to compute the gradient of the response5

functionG:
1) For ∂G

∂λ
∈ Yp,

∂G
∂ϕ

∈ Y solve the adjoint problem





−
∂φ̃∗

∂t
− (F ′

ϕ(ϕ,λ))
∗φ̃∗ = ∂G

∂ϕ
,

φ̃∗
∣∣
t=T

= 0
(4.10)

and put

F =
∂G

∂λ
+(F ′

λ(ϕ,λ))
∗φ̃∗.

2) Findv by solving

Hv = F

with the Hessian of the original functionalJ defined by
(4.4)–(4.6).10

3) Solve the direct problem

{
∂P2
∂t

−F ′

ϕ(ϕ,λ)P2 = F ′

λ(ϕ,λ)v, t ∈ (0,T )

P2

∣∣
t=0

= 0.

(4.11)

4) Compute the gradient of the response function as

dG

dϕobs
= V2CP2. (4.12)

Formula (4.12) allows us to estimate the sensitivity of the15

functionals related to the optimal solution after assimilation,
with respect to observation data.

Remark 1. In the above consideration, to show the solv-
ability, we have assumed that the direct and adjoint tangent
linear problems of the form

{
∂φ
∂t

−F ′

ϕ(ϕ,λ)φ = f, t ∈ (0,T )

φ
∣∣
t=0

= 0,

{
−
∂φ∗

∂t − (F ′

ϕ(ϕ,λ))
∗φ∗ = g, t ∈ (0,T )

φ∗
∣∣
t=T

= 0

with f,g ∈ Y have the unique solutionsφ,φ∗ ∈ Y .
20

Remark 2. The analysis presented above is based on
the hypothesis that the initial state of the system under
observation is known, and that it is only model parameters
(boundary conditions, forcing terms, distributed coefficients,
etc.) that are to be determined from the observations. Often, 25

a more realistic situation would be one where the assimi-
lation is intended at determining both the initial conditions
of the system and, in addition, model parameters (Dee,
2005; Smith et al., 2013). The sensitivity analysis can be
applied as well to such a situation. To consider joint state30

and parameter estimation problem, we should use the results
both of this paper and of the previous one (Shutyaev et al.,
2017). In this case we need to introduce an additional term
related to the initial condition into the cost function (2.2)
to find simultaneouslyu and λ. The optimality system35

(2.8)–(2.10) will be supplemented by an additional equation
related to the gradient of the cost function with respect tou.
The Hessian in this case is a 2x2 operator-matrix, acting on
the augmented vectorU = (u,λ)T , and all the derivations
are made similarly, being, however, more cumbersome and40

lengthy.

Below we give a proof-of-concept analytic example to
show how the algorithm (4.10)–(4.12) works. Then, as an
application, we consider a variational data assimilation prob- 45

lem for a sea thermodynamics model.

5 Proof-of-concept analytic example

Let us consider a simple evolution problem for the ordinary
differential equation




dϕ

dt
+ aϕ= λg, t ∈ (0,T )

ϕ
∣∣
t=0

= u,

(5.1) 50

where u ∈ R; a,λ ∈ R, g = g(t)≥ 0. Here, in the nota-
tions of section 2, we haveX = R, Y = L2(0,T ),F (ϕ,λ) =
−aϕ+λg. Let us formulate the data assimilation problem to
find the parameterλ if we have observation data forϕ at the
end of the time intervalt= T . We need to minimize the cost55

function

J(λ) = inf
v∈R

J(v), (5.2)

whereJ(v) =
1

2

∣∣ϕ̃|t=T −ϕobs

∣∣2, and ϕ̃ is the solution to

(5.1) withλ= v.
Thus, here we haveYp = R,V1 = 0, V2 = 1,Cϕ= ϕ|t=T . 60

In this case, the optimality system (2.8)–(2.10) has the
form:




dϕ

dt
+ aϕ= λg, t ∈ (0,T )

ϕ
∣∣
t=0

= u,

(5.3)
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



dϕ∗

dt
− aϕ∗ = 0, t ∈ (0,T )

ϕ∗
∣∣
t=T

= ϕ
∣∣
t=T

−ϕobs,

(5.4)

(g,ϕ∗) =

T∫

0

g(t)ϕ∗(t) = 0. (5.5)

It is easy to see that the problem of data assimilation (5.1)-5

(5.2) has a unique solution

λ= λopt =
ϕobs −ϕ0

ϕ1
, (5.6)

whereϕ0 = u0e
−aT , ϕ1 =

T∫
0

e−a(T−t′)g(t′)dt′.

Indeed, ifλ has the form (5.6), the solution of the problem
(5.1) satisfiesϕ|t=T = ϕobs, and the functionalJ from (5.2)10

attains its minimal valueJ = 0. In this caseϕ∗ = 0, and the
optimality system (5.3)-(5.5) is satisfied.

Let us consider the response function in the form

G(ϕ,λ) =

T∫

0

ϕ(t)dt. (5.7)

Leta 6= 0. After assimilation, taking into account the solution15

of the problem (5.1), we have

G(ϕ,λ) =
u

a
(1− e−aT )+

λopt
a




T∫

0

g(t)dt−ϕ1


 , (5.8)

whereλopt is given by (5.6). Then, by differentiation ofG
with respect toϕobs we have the gradient

dG

dϕobs
=

1

aϕ1




T∫

0

g(t)dt−ϕ1


 . (5.9)20

Let us now apply the algorithm (4.10)–(4.12) to compute

the gradient of the functionG. Since
∂G

∂ϕ
= 1, (F ′

ϕ(ϕ,λ))
∗ =

−a, then on the first step of the algorithm, we solve the prob-
lem (4.10) and get the solution

φ̃∗(t) =
1

a
(1− e−a(T−t)). (5.10)25

Taking into account that∂G/∂λ= 0 and (F ′

ϕ(ϕ,λ))
∗φ̃∗ =

(g, φ̃∗), we getF = (g, φ̃∗) i.e.,

F =

T∫

0

gφ̃∗dt=
1

a




T∫

0

g(t)dt−ϕ1


 . (5.11)

On the second step of the algorithm, one need to solve
the equationHv = F with the HessianH defined by the for-30

mulas (4.4)–(4.6). Since all the second order derivatives of

F (ϕ,λ) equal zero, then it is easily seen thatH in this case
is the operator of multiplication by the scalar

H =

T∫

0

g(t)ψ|t=T e
−a(T−t)dt= (ψ|t=T )

2, (5.12)

whereψ(t) is the solution of the problem (5.1) withu= 0, 35

λ= 1.
Then, after the second step of the algorithm we get

v =H−1F = (ψ|t=T )
−2F . (5.13)

On the third step of the algorithm, we need to solve
the problem (4.11). SinceF ′

λ(ϕ,λ) = g, the solution of this 40

problem has the formP2(t) = vψ(t). Finally, using (4.12),
we get the gradient ofG with respect toϕobs:

dG

dϕobs
= P2|t=T = vψ(T ) =

ψ(T )F

ψ2(T )
=

F

ψ(T )
. (5.14)

Moreover, sinceϕ1 = ψ(T ), then from (5.14) and (5.11) we
have 45

dG

dϕobs
=

1

aϕ1




T∫

0

g(t)dt−ϕ1


 . (5.15)

Thus, the gradient obtained by the algorithm (4.10)–(4.12)
exactly coincides with the value of the gradient obtained in
(5.9) by direct differentiation, which is the expected result.

6 Data assimilation problem for a sea thermodynamics 50

model

Consider the sea thermodynamics problem in the form
(Marchuk et al., 1987):

Tt+(Ū,Grad)T −Div(âT ·Grad T ) = fT in D× (t0, t1),

T = T0 for t= t0 in D,

−νT
∂T

∂z
=Q onΓS × (t0, t1),

∂T

∂n
= 0 onΓw,c× (t0, t1),

Ū (−)
n T +

∂T

∂n
=QT onΓw,op× (t0, t1),

∂T

∂n
= 0 onΓH × (t0, t1), (6.1)

where T = T (x,y,z, t) is an unknown temperature func-
tion, t ∈ (t0, t1), (x,y,z) ∈D =Ω× (0,H), Ω⊂R2, H = 55

H(x,y) is the function of the bottom releif,Q=Q(x,y,t)
is the total heat flux,Ū = (u,v,w), âT = diag((aT )ii),
(aT )11 = (aT )22 = µT , (aT )33 = νT , fT = fT (x,y,z, t) are
given functions. The boundary of the domainΓ≡ ∂D is rep-
resented as a union of four disjoint partsΓS , Γw,op, Γw,c, 60

ΓH , whereΓS =Ω (the unperturbed sea surface),Γw,op is
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the liquid (open) part of vertical lateral boundary,Γw,c is
the solid part of the vertical lateral boundary,ΓH is the sea
bottom, Ū (−)

n = (|Ūn| − Ūn)/2, andŪn is the normal com-
ponent ofŪ . The other notations and a detailed description
of the problem statement can be found in Agoshkov et al.5

(2008).
Problem (6.1) can be written in the form of an operator

equation:

Tt+LT = F +BQ, t ∈ (t0, t1),

T = T0, t= t0,
(6.2)

where the equality is understood in the weak sense, namely,10

(Tt, T̂ )+ (LT,T̂ ) = F(T̂ )+ (BQ,T̂ ) ∀T̂ ∈W 1
2 (D), (6.3)

in this caseL, F ,B are defined by the following relations:

(LT,T̂ )≡

∫

D

(−TDiv(Ū T̂ ))dD+

∫

Γw,op

Ū (+)
n T T̂dΓ+

+

∫

D

âTGrad(T ) ·Grad(T̂ )dD,

F(T̂ ) =

∫

Γw,op

QT T̂ dΓ+

∫

D

fT T̂ dD, (Tt, T̂ ) =

∫

D

TtT̂ dD,

(BQ,T̂ ) =

∫

Ω

QT̂
∣∣
z=0

dΩ,

and the functionŝaT ,QT , fT , Q are such that equality (6.3)
makes sense. The properties of the operatorL were studied
by Agoshkov et al. (2008).

Due to (6.3), the equation (6.2) is consid-15

ered in Y ∗ = L2(t0, t1; (W
1
2 (D))∗), and the oper-

ator B : L2(Ω× (t0, t1))→ Y ∗ maps the function
Q ∈ L2(Ω× (t0, t1)) into the function BQ ∈ Y ∗ such
that (BQ,T̂ ) =

∫
Ω

QT̂
∣∣
z=0

dΩ, ∀T̂ ∈W 1
2 (D). Therefore,

BQ is a linear and bounded functional onL2(0,T ;W
1
2 (D)).20

Consider the data assimilation problem for the sea surface
temperature (see Agoshkov et al., 2008). Suppose that the
functionQ ∈ L2(Ω× (t0, t1)) is unknown in problem (6.1).
Let alsoTobs(x,y,t) be the function on̄Ω≡ Ω∪∂Ω obtained
for t ∈ (t0, t1) by processing the observation data, and this25

function in its physical sense is an approximation to the sur-
face temperature function onΩ, i.e. toT

∣∣
z=0

. We suppose
thatTobs ∈ L2(Ω× (t0, t1)), but the functionTobs may not
possess greater smoothness and hence it cannot be used for
the boundary condition onΓS . We admit the case whenTobs30

is defined only on some subset ofΩ× (t0, t1) and denote the
indicator (characteristic) function of this set bym0. For defi-
niteness sake, we assume thatTobs is zero outside this subset.

Consider the data assimilation problem for the surface
temperature in the following form: findT andQ such that 35





Tt+LT = F +BQ in D× (t0, t1),

T = T0, t= t0

J(Q) = inf
v
J(v),

(6.4)

where

J(Q) =
α

2

t1∫

t0

∫

Ω

|Q−Q(0)|2dΩdt+

+
1

2

t1∫

t0

∫

Ω

m0|T
∣∣
z=0

−Tobs|
2dΩdt, (6.5)

andQ(0) =Q(0)(x,y,t) is a given function,α= const > 0. 40

Forα > 0 this variational data assimilation problem has a
unique solution. The existence of the optimal solution fol-
lows from the classic results of the theory of optimal control
problems (Lions, 1968), because it is easy to show that the
solution to problem (6.1) continuously depends on the flux45

Q (a priori estimates are valid in the corresponding func-
tional spaces), the functionalJ is weakly lower semicontin-
uous, and the space of admissible controlsL2(Ω×(t0, t1)) is
weakly compact.

For α= 0 the problem does not always have a solution,50

but, as was shown by Agoshkov et al. (2008), there is unique
and dense solvability, and it allows one to construct a se-
quence of regularized solutions minimizing the functional,
which is related to a sequence of coefficientsαn, with αn →
0 whenn→∞. 55

The optimality system determining the solution of the for-
mulated variational data assimilation problem according to
the necessary conditiongradJ = 0 has the form:

Tt +LT = F +BQ in D× (t0, t1),

T = T0, t= t0,
(6.6)

60

−(T ∗)t +L∗T ∗ =Bm0(Tobs −T ) in D× (t0, t1),

T ∗ = 0, t= t1,
(6.7)

α(Q−Q(0))−T ∗ = 0 on Ω× (t0, t1), (6.8)

whereL∗ is the operator adjoint toL.
Here the boundary-value functionQ plays the role of 65

λ from Section 2,ϕ= T , the operatorF has the form
F (T,Q) =−LT +BQ, andF ′

T =−L,F ′

Q =B. Since the
operatorF (T,Q) is bilinear in this case, the HessianH act-
ing on someψ ∈ L2(Ω×(t0, t1)) is defined by the successive
solution of the following problems: 70

{
∂φ
∂t

+Lφ = Bψ, t ∈ (t0, t1)

φ
∣∣
t=t0

= 0,
(6.9)
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{
−
∂φ∗

∂t +L∗φ∗ = −Bm0φ, t ∈ (t0, t1)

φ∗
∣∣
t=t1

= 0,
(6.10)

Hψ = αψ−B∗φ∗. (6.11)

To illustrate the above-presented theory, we consider the5

problem of sensitivity of functionals of the optimal solution
Q to the observationsTobs. Let us introduce the following
functional (response function):

G(T ) =

t1∫

t0

dt

∫

Ω

k(x,y,t)T (x,y,0, t)dΩ, (6.12)

wherek(x,y,t) is a weight function related to the temper-10

ature field on the sea surfacez = 0. For example, if we are
interested in the mean temperature of a specific region of the
seaω for z = 0 in the interval̄t−τ ≤ t≤ t̄, then ask we take
the function

k(x,y,t) =

{
1
/
(τmesω) if (x,y) ∈ ω, t̄− τ ≤ t≤ t̄

0 else,

(6.13)15

where mesω denotes the area of the regionω. Thus, the func-
tional (6.12) is written in the form:

G(T ) =
1

τ

t̄∫

t̄−τ

dt

(
1

mesω

∫

ω

T (x,y,0, t)dΩ

)
. (6.14)

Formula (6.14) represents the mean temperature averaged
over the time interval̄t− τ ≤ t≤ t̄ for a given regionω. The20

functionals of this type are of most interest in the theory of
climate change (Marchuk, 1995; Marchuk et al., 1996).

In our notations the functional (6.12) may be written as

G(T ) =

t1∫

t0

(Bk,T )dt= (Bk,T )Y , Y = L2(D× (t0, t1)).

We are interested in the sensitivity of the functionalG(T ),
obtained forT after data assimilation, with respect to the ob-
servation functionTobs.25

By definition, the sensitivity is given by the gradient ofG
with respect toTobs:

dG

dTobs
=
∂G

∂T

∂T

∂Tobs
. (6.15)

Since∂G∂T =Bk, then according to the theory presented in
Section 4, to compute the gradient (6.15) we need to perform30

the following steps:
1) Fork defined by (6.13) solve the adjoint problem





−
∂φ̃∗

∂t
+L∗φ̃∗ = Bk, t ∈ (t0, t1)

φ̃∗
∣∣
t=t1

= 0
(6.16)

and putΦ=B∗φ̃∗.
2) Findχ by solvingHχ=Φ with the Hessian defined by35

(6.9)–(6.11).
3) Solve the direct problem

{
∂P2
∂t

+LP2 = Bχ, t ∈ (t0, t1)

P2

∣∣
t=t0

= 0.
(6.17)

4) Compute the gradient of the response function as

dG

dTobs
=m0P2

∣∣
z=0

. (6.18) 40

Formula (6.18) allows us to estimate the sensitivity of the
functionals related to the mean temperature after data assim-
ilation, with respect to the observations on the sea surface.

7 Numerical example for the Baltic Sea dynamics
model 45

The numerical experiments have been performed using the
three-dimensional numerical model of the Baltic Sea hy-
drothermodynamics developed at the INM RAS on the base
of the splitting method (Zalesny et al., 2017) and supplied
with the assimilation procedure (Agoshkov et al., 2008) for50

the surface temperatureTobs with the aim to reconstruct the
heat fluxesQ.

The object of simulation is the Baltic Sea water area. The
parameters of the considered domain and its geographic co-
ordinates can be described in the following way:σ-grid is 55

336× 394× 25 (the latitude, longitude, and depth, respec-
tively). The first point of the "grid C" (Zalesny et al., 2017)
has the coordinates9.406◦ E and53.64◦ N. The mesh sizes
in x andy are constant and equal to 0.0625 and 0.03125 de-
grees. The time step is∆t= 5 minutes. The initial condition60

for the whole model, includingT0, was chosen in the fol-
lowing way: the model was start running with zero initial
conditions and ran with atmospheric forcing obtained from
reanalysis about 20 years, and after that the result of calcu-
lation was taken as an initial condition for further runningof 65

the model. The assimilation procedure worked only during
some time windows. To start the assimilation procedure for
the heat flux estimation, the initial condition was taken as a
model forecast for the previous time interval.

The Baltic Sea daily-averaged nighttime surface tempera-70

ture data were used forTobs. These are the data of the Danish
Meteorological Institute based on measurements of radiome-
ters (AVHRR, AATSR and AMSRE) and spectroradiome-
ters (SEVIRI and MODIS) (Karagali, 2012). Data interpola-
tion algorithms were used (Zakharova et al., 2013) to convert 75

observations on computational grid of the numerical model
of the Baltic Sea thermodynamics. On each time step the
heat flux was determined at each surface point, therefore, the
number of scalar parameters to be determined were equal to
the number of scalar observations. 80
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The mean climatic flux obtained from the NCEP (National
Center for Environmental Prediction) reanalysis was taken
forQ(0). We need to mention thatQ(0) has a physical mean-
ing here, it is not only an initial guess, but a parameter cal-
culated from atmospheric data and taken in the model for5

temperature boundary condition on the sea surface when the
model runs without assimilation procedure.

Using the hydrothermodynamics model mentioned above,
which is supplied with the assimilation procedure for the sur-
face temperatureTobs, we have performed calculations for10

the Baltic Sea area where the assimilation algorithm worked
only at certain time momentst0; in this caset1 = t0 +∆t.
The aim of the experiment was the numerical study of the
sensitivity of functionals of the optimal solutionQ to obser-
vation errors in the interval(t0, t1).15

Implementing the assimilation procedure, we considered
a system of form (6.6)–(6.8), where (6.6)–(6.7) mean the
finite-dimensional analogues of the corresponding problems
(Agoshkov et al., 2008). For the statement of a data assim-
ilation problem we introduce the cost function (6.5) with a20

regularization parameterα, which weights the squared dif-
ference|Q−Q(0)|2. Since in all numerical experimentsα
was chosen very small, the impact of the first term in the
functional was also small, and thereforeQwas different from
Q(0).25

We use here the SI units, namely,K (kelvin) is used for
temperature,ms−1 for velocities,mKs−1 for the heat flux
Q. The parameterα is defined ass2m−2 to give the both
terms in (6.5) the same dimension. It is easily seen that in this
case, the units of the gradientdGdTobs

from (6.18) are defined30

asm−2s−1.
Let us present some results of numerical experiments.
The calculation results fort0 = 50 hours (600 time steps

for the model) are presented in Fig.1 showing the gradient
of the functionalG(T ) defined by (6.14) and related to the35

mean temperature after data assimilation, with respect to the
observations on the sea surface, according to (6.16)– (6.18).
Hereω =Ω, τ =∆t, t̄= t1, α= 10−5s2m−2.

We can see the sub-areas (in red) in which the functional
G(T ) is most sensitive to errors in the observations during40

assimilation. The largest values of the gradient ofG(T ) cor-
respond to the pointsx,y lying near the regions with a small
depth (cf. sea topography, Fig.2). One explanation of this
phenomenon may be the fact that in the areas with depths
of about50m, rapid convection occurs in the upper mixed45

layer. With the assimilation of the surface temperature, in-
formation is transmitted faster to shallower depths, whichin
turn contributes to a higher sensitivity to data in these places,
in contrast to deeper regions.

Remark 3. We use the discretize-then-optimize approach,50

and for numerical experiments all the presented equations
are understood in a discrete form, as finite-dimensional
analogues of the corresponding problems, obtained after ap-
proximation. This allows us to consider model equations as a

Figure 1. The gradient of the functionalG(T ) [m−2s−1]

Figure 2. Baltic Sea topography [m]

perfect model, with no approximation errors. Therefore, the 55

accuracy of the sensitivity estimates given by the algorithm
(6.16)– (6.18) are determined by the accuracy of solving the
Hessian equationHχ=Φ (step 2 of the Algorithm). Due
to (6.9)– (6.11), this equation is equivalent to a linear data
assimilation problem, and an approximate solution to the60

minimization problem is obtained by an iterative procedure.

The above studies allow us to solve the problem of the def-
inition of sea sub-areas in which the functional of the optimal
solution is most sensitive to errors in the observations during 65
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variational data assimilation, when the error values are not
apriori known.

8 Conclusions

In this paper we have considered numerical algorithms to
study the sensitivity of functionals of the optimal solution5

of variational data assimilation problem aimed at the re-
construction of unknown parameters of the model. The op-
timal solution obtained as a result of assimilation depends
on the observations that may contain uncertainties. Comput-
ing the gradient of the functionals with respect to obser-10

vations reduces to the solution of a non-standard problem
which is a coupled system involving direct and adjoint equa-
tions with mutually dependent variables. Solvability of the
non-standard problem is related to the properties of the Hes-
sian of the original cost function. An algorithm developed15

to compute the gradient of the response function is based
on the second-order adjoint techniques. Numerical example
for variational data assimilation problem related to sea sur-
face temperature for the Baltic Sea thermodynamics model
demonstrates the result of the gradient computation of the20

response function associated with the mean surface tempera-
ture. The presented algorithm may be used to determine the
sea sub-areas in which the functionals of the optimal solu-
tion are most sensitive to errors in the observations during
variational data assimilation.25
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