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Abstract. The problem of variational data assimilation for a cost function related to observations. A necessary opitiynal
nonlinear evolution model is formulated as an optimal con-condition reduces an optimal control problem to an optimal-
trol problem to find unknown parameters of the model. Theity system which involves the model equations, the adjoint
observation data, and hence the optimal solution, may conproblem, and input data functions. The optimal solution de-
tain uncertainties. A response function is considered as @ends on the observation data, and for future forecast it is
functional of the optimal solution after assimilation. Bds very important to study the sensitivity of the optimal sauat
on the second-order adjoint techniques, the sensitivith@f  with respect to observation errors (Baker and Daley, 2000).
response function to the observation data is studied. Tdte gr  The necessary optimality condition is related to the gra-
dient of the response function is related to the solution ofdient of the original cost function, thus to study the sen-
a non-standard problem involving the coupled system of di-sitivity of the optimal solution, one should differentiate
rect and adjoint equations. The non-standard problemds stu the optimality system with respect to observations. In this
ied, based on the Hessian of the original cost function. Ancase, we come to the so-called second-order adjoint preb-
algorithm to compute the gradient of the response functionem (Le Dimet et al., 2002). The first studies of sensitivity
with respect to observations is presented. Numerical examef the response functions after assimilation with the use of
ple is given for variational data assimilation problemtet  second-order adjoint were done by Le Dimet et al. (1997) for
to sea surface temperature for the Baltic Sea thermodysamiovariational data assimilation problem aimed at restoratid
model. initial condition, where sensitivity with respect to model
parameters was considered. The equations of the forecast
sensitivity to observations in a four-dimensional (4D-Var
data assimilation were derived by Daescu (2008). Based on
1 Introduction these results, a practical computational approach was give
by Cioaca et al. (2013) to quantify the effect of observatian
The methods of data assimilation (DA) have become an im-n 4D-Var data assimilation.
portant tool for analysis of complex physical phenomena in  The issue of sensitivity is related to the statistical prepe
various fields of science and technology. These methods alies of the optimal solution (see Gejadze et al., 2008, 2011,
low us to combine mathematical models, data resulting from013; Shutyaev et al., 2012). General sensitivity analysis
observations and a priori information. The problems of-vari variational data assimilation with respect to observatiom ss
ational DA can be formulated as optimal control problemsa nonlinear dynamic model was given by Shutyaev et al.
(e.g. Lions, 1968; Le Dimet and Talagrand, 1986) to find un-(2017) to control the initial-value function. The dynamic-f
known model parameters such as initial and/or boundarymulation of the problem is important because it shows differ
conditions, right-hand sides in the model equations (f@ci ent implementation options (Gejadze et al., 2018).
terms), distributed coefficients, based on minimizatiothef
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2 V. Shutyaev et al.: Sensitivity in variational data assimilation

This paper is based on the results of Shutyaev et al. (20172 Statement of the problem
and presents the sensitivity analysis with respect to ebser
vations in variational data assimilation aimed at restorat We consider the mathematical model of a physical process
of unknown parameters of a dynamic model. We shouldthat is described by the evolution problem
mention the importance of the parameter estimation prob-

lem itself. A precise determination of the initial conditio %‘te = F(e,N)+f, te(0,T) 2.1)
is very important in view of forecasting, however the use gp’H) = u, '

of variational data assimilation is not limited to operatid

forecasting. In many domains (e.g. hydrology) the uncer-where the initial state: belongs to a Hilbert spack, o = s
tainty in the parameters is more crucial that the uncemtaint (¢) is the unknown function belonging i = L. (0,7; X)

in the initial condition (e.g. White at al., 2003). In some jith the norm|e||y = (%(p);/? — (f0T||@(t)\\§(dt)l/2,FiS
problems the quantity of interest can be represented dig nonlinear operator mapping x Y, into Y, Y, is a Hilbert
rectly by the estimated parameters as controls. For examspace (space of control parameters, or control spgce)y .

ple, in Agoshkov et al. (2015) the sea surface heat flux issuppose that for given € X, f € Y and) € Y, there exists «
estimated in order to understand its spatial and temporal

. . LD .
variability. The problems of parameter estimation are com-2 Uniaue solution € ¥ to (2.1) with ot € Y. The function
. . . ' . A is an unknown model parameter.
mon inverse problems considered in geophysics and in en- . :
Let us introduce the cost function

gineering applications (see Alifanov et al., 1996; Sun,499

Zhu and Navon, 1999; Storch et al., 2007). Last years an in-

terest is rising to the parameter estimation using 4D-Var (A)

(Bocquet, 2012; Schirber at al., 2013; Yuepeng et al., 2018; 1

Agoshkov and Sheloput, 2017). + 5(‘/2 (Co = @obs ), O = Pobs ) Yoy
We consider a dynamic formulation of variational data as-

similation problem for parameter estimation in a continsiou Where\, € Y, is a prior (background) functiomsess € Yops o

form, but the presented sensitivity analysis formulas wéth IS @ prescribed function (observational daia), is a Hilbert

spect to observations do not follow from our previous ressult SPace (observation space); Y — Yo, is a linear bounded

for the initial condition problem (Shutyaev et al., 2017jjlan Observation operatov; : Y, — Y, andVs : Yy — Yo, are

constitute a novelty of this paper. Of course, the initiatco Symmetric positive definite bounded operators.

dition function may be also considered as a parameter, how- L€t us consider the following data assimilation problem

ever, in our dynamic formulation we have two equations forWith the aim to estimate the parameter for given v €

the model: one equation for describing an evolution of the X,/ € Y, find A € ¥}, andy € Y such that they satisfy (2.1),

model operator (involving model parameters such as rightand on the set of solutions to (2.1), the functiosi@h) takes

hand sides, coefficients, boundary conditions etc.), and antheé minimum value, i.e.

other equation is considered as an initial condition.

= SR XA Ny, +
(2.2)

This paper is organized as follows. In section 2, we give %“f = F(p,N)+f, te(0,T)
the statement of the variational DA problem for a nonlinear <p|t:0 = u, (2.3) =
evolution model to estimate the model parameters. In Sectio | J(\) = inf J(v).
VeEY,

3, sensitivity of the response function after assimilatioti
respect to observations is studied, and its gradient iseictla We suppose that the solution of (2.3) exists. Let us note

o the solution of a non-;tandard problem. In Sgctlon 4 Wehat the solvability of the parameter estimation problears (
derive an operator equation involving the Hessian to StUdeentifiability) has been addressed, e.g., in Chavent (1983

the.sr:)IvabiIity of the Tn-sta(r;dard ;;r%blem, and gi\]/ce an al'Navon (1998). To derive the optimality system, we assume
gorithm to compute the gradient of the response function, solution, and the operatoF (i, ) in (2.1)~(2.2) are

A proof-of-concept analytic example with a simple model is regular enough, and far€ Y, find the gradient of the func-
given in Section 5 to demonstrate how the sensitivity analy-

: . ) o tional J with respect to\:
sis algorithm works. Section 6 presents an application®f th
theory to the DA problem for a sea thermodynamics model.  7(\), = (V; (A= \y),0)y, + (Va(C'o — ons ), Co)y,
Numerical examples are given in Section 7 for the Baltic Sea : -
dynamics model. The main results are discussed in the Con-

clusions. = (VitA = X),0)y, + (CVa(Cp = 0obs), )y (2.4)

whereg is the solution to the problem:

%_f = FlLp. N+ F (0. N\, (2.5)
¢‘t:0 = 0
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Here I, (o, \) : Y = Y, F(p,\) : Y, = Y are the Fréchet optimality system (2.8)—(2.10). By definition, the senétyi
derivatives ofF' (Marchuk et al., 1996) with respect¢pand is defined by the gradient &F with respect tap,ps:

inal “is th e i
A, correspondingly, and@™* is the adjoint operator t@' de i 9G op G 9N

fined by(Co,¥)y,,, = (¢,C*)y, ¢ €Y, ¥ € Yops. = = : (3.1)
s Letus consider the adjoint operafd?/, (¢, A))* : Y — Y dpobs  Op Opops  OX Dpobs
and introduce the adjoint problem: If dpops IS @ perturbation orp,,s, We get from the opti-
9L mality system: a0
_(&'F(F;((P,)\))*‘P* = C*‘/2(0¢_(pobs)a
ot ) (2.6) o y y
&y = 0. { e AUV I (ERV 52)
0pl,_y = 0,
Then (2.4) with (2.5) and (2.6) gives =0
JNv=ViA=X),0)y, — (¢, F{(p,\v)y = 950" e .
=0 =200y, = (@ Ble Ay S0 (Bl N) e — (R ()oY " =
= (F\ (0, A)oN) ™ = C*Va(Cop — 6pobs),
(A= X),0)y, = (B9, 0) 6" 0)y, @n Ll =0
3.3
where (F(¢,\))*:Y =Y, is the adjoint operator to 33)
F{(¢,X). Therefore, the gradient of is defined by
J'(N)=Vi(A =) = (Fx(,A) 9" VoA = (FY, (0, A)d0)" " — (FY\ (0, A)0A)" ¢
w  From (2.4)—(2.7) we get the optimality system (the neces- = (Fi(p,A)"0¢" =0,
sary optimality conditions, Lions, 1968): (3.4) s
%o — FleN+f te(.T), and
| (2.8) dG G G
Plimo = W ( 75 o s) = <_75 > + <_’6)‘) . (3.5
dsoobs Pob Yops 8(,0 v v o\ Y, ( )
8 * * * *
G+ (FLe )" = C'Va(Cp— pobs), (2.9)  Wheredyp, 5p* andd\ are the Giteaux derivatives of, ¢*
@*!tZT = 0 and) in the directiom,,s (for examplegdp = 83fbs 0 Pobs)-
15 To compute the gradier¥,,,.G(¢, ), let us introduce
ViI(A =) — (FX (0, M) ¢* = 0. (2.10)  three adjoint variable®; € Y, P, € Y andP; € Y,. By tak-

ing the inner product of (3.2) b¥y, (3.3) by P, and of (3.4)

We assume that the system (2.8)—(2.10) has a un|qu§yp3 and adding them, we obtain:

solution. The system (2.8)—(2.10) may be considered as
generalized modeld(U) =0 with the state variablé/ = ddp , ,

» (p,¢*,)), and it contains information about observations. (W — Fo(p, Ao — FA(%A)5>\7P1>Y+
In what follows we study the problem of the sensitivity of
functionals of the optimal solution to the observation data dop*

If the observation operatdr is nonlinear, i.eCyp = C(¢p), <_7 N

then the right-hand side of the adjoint equation (2.9) dosta

2 ('C:O'i* instead ofC* and all the analysis presented belowis  —(F, (¢,\)0\)*p* + C*Va(Coyp — 5%b5),P2> +
similar. Y

+ <V16A — (F3, (9, M)090) 9" — (F\ (9, A)oN) 9" —

(Fg (0, M) 0" — (F, (0, M) d) " 0" =

3 Sensitivity of functionals after assimilation
~(E )6 ) =0,
Yp
hen, using integration by parts and adjoint operators,ete g

In geophysical applications the observation data cannot be
measured precisely, therefore, it is important to be able tQ_I_
% estimate the impact of uncertainties in observations on the
outputs of the model after assimilation. P, ) . . ..
Let us introduce a response functiGi, ), which is (Wﬁw = (Fo (@, )" PL = (F (0, A) P2) " —
supposed to be a real-valued function and can be considered
as a functional oi” x Y,,. We are interested in the sensitivity . . e s
s of G with respect tap,,s, with ¢ and A obtained from the —(Fp (9, ) P3) " +C VQCP2>Y+<5“0L&T’Pl|tT>X+
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OP.
+(00. B2 - Flo NP - o P ) +
Y

+<5s0*|t_o’P2\t_o) +(5)‘aV1P3_(Fg/;/>\(‘Pa)\)P2)*‘P*_
X
(e NPy e — (F;w»*a) -

YP
- <(s%bs7vgcprz> =0. (3.6)

Yobs
Here we put

aP / * i * %
_a—tl_(Fap(gD?)‘)) Pl_(Fgoga(gpa)‘)PQ) Y -

oG

(B (e N Po)'¢" + CTVaCPy = 52,

and
ViPs — (F)\ (0, A P2)* " — (FX\ (0, A) P3) " —

/ R oG
_(F/\(%)‘)) Py = 8_)\’ P1|t=T: 07

OP:
—Z*F;(@,A)szF),\((p,)\)Pg =0, Py

ot =0

li=o

4 Operator equation via Hessian and response function
gradient

Let us denote the auxiliary variable= P; and rewrite the
non-standard problem (3.7)—(3.9) in an equivalent form:

P. / '
{ %_F¢(¢7>\)P2 Fy (¢, M), (4.1)

P2|t:0 = 0

D ! * " P
_% - (F<p((p7/\)) Pl_(F¢¢(<P,A)P2) =
= (Fl(p,N0)¢" = C*VaCP + %—i,

Pl’t:T = 0
(4.2)
Viv = (FJ\ (0, A Pa) " = (Fi\ (0, M)v) " =
/ —— oG
—(F)\((p’ )‘)) Pl = O\ ) (43) 25

Here we have three unknownseY,, P, €Y. Let us
write (4.1)—(4.3) in the form of an operator eqution foWe

Thus, if P, P», P; are the solutions of the following system define the operatdi, which acts onv belonging toY;,, by

of equations

_op

o~ (Fpe ) P— (FY (e, M) Po) =
= (FX,(p,A)P3)" e —C*VQCPerg_g
Pl’t:T = 0,
) 3.7)

O _Fl (NP — Fl(e, NP5 = 0, te(0,T)
PQ‘t:O = 0
(3.8)

ViP5 — (F\ (0, N P2)" 0" — (B3N (9, M) Ps) "™ —

, . oG
—(FX(p,\) P = X (3.9)

then from (3.6) we get

the successive solution of the following problems:

{%%—F;w,w = RleNuw, te0T) g4
¢|t:0 = 0
S0 (L )0 — (Lo N)6) e =
= (F{,(e.Nw)"¢* = C*V2C9,
8 er = 0,
(4.5)
Hw = Viw — (FJ\ (0, \)d) "~
~(F (o N w)* o — (B (9. 0)" 6" (4.6)

Here )\, andy* are the solutions of the optimality syster
(2.8)—(2.10). Then (4.1)—(4.3) is equivalent to the folilogy
equation inY),:

0G 0G
6 -+, 0A =19 obs P; ) = .
(&p’ @)Y“‘(a)\a )Yp (@b VaC 2>Y0bs Ho=F 4.7)
» and due to (3.5) the gradient 6fis given by with the right-hand sidé” defined by
d oG ~
¢ =1LCPs. (3.10) F=—+(F(p,\) 0", (4.8) 4
dobs oA
We get a coupled system of two differential equations (3-7)where<£* is the solution to the adjoint problem:
and (3.8) of the first order with respect to time, and (3.9). To
study this non-standard problem (3.7)—(3.9), we reducet t 6" , Y oG
15 Single operator equation involving the Hessian of the aagi Ot (Fw(%{‘)) r = g’ te(0.T) (4.9)
cost function. ¢*|,_, = 0.
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It is easily seen that the operatdrdefined by (4.4)—(4.6)
is the Hessian of the original functionélconsidered on the

optimal solution\ of the problem (2.8)—(2.10)1" (\) = H.

Under the assumption th&t is positive definite, the oper-

with f,¢ € Y have the unique solutions ¢* € Y.

Remark 2. The analysis presented above is based on
the hypothesis that the initial state of the system under

ator equation (4.7) is correctly and everywhere solvable inobservation is known, and that it is only model parameters
Y, (Vainberg, 1964), i.e. for every there exists a unique (boundary conditions, forcing terms, distributed coedfits,

solutionv € Y}, and
lvlly, <cllFlly,, ¢=const > 0.

Therefore, under the assumption th&t(\) is positive

etc.) that are to be determined from the observations. Often
a more realistic situation would be one where the assimi-
lation is intended at determining both the initial conditso

of the system and, in addition, model parameters (Dee,
2005; Smith etal., 2013). The sensitivity analysis can be

definite on the optimal solution, the non-standard problemapp"ed as well to such a situation. To consider joint state

(3.7)—(3.9) has a unique solutidh, P, € Y, P; € Y,,.

and parameter estimation problem, we should use the results

Based on the above consideration, we can formulate they,i of this paper and of the previous one (Shutyaev et al.,
s following algorithm to compute the gradient of the response;1 7y |, this case we need to introduce an additional term

functionG:

1) For%—g €Y, % €Y solve the adjoint problem
0" _ (v vie _ 0G
e A GACN N e (4.10)
¢* |t:T =0
and put
aG / * 1%
2) Findv by solving
Ho=F

with the Hessian of the original functional defined by
1 (4.4)—(4.6).
3) Solve the direct problem

F{ (o, \)v,
0.

te(0,7)

{ 9% _Fi(e. NPy =

(4.11)

4) Compute the gradient of the response function as

dG
dSDobs

=V,CP;. (4.12)

related to the initial condition into the cost function (R.2
to find simultaneouslyu and A. The optimality systemss
(2.8)—(2.10) will be supplemented by an additional equmatio
related to the gradient of the cost function with respeat.to
The Hessian in this case is a 2x2 operator-matrix, acting on
the augmented vectdy = (u,A)”, and all the derivations
are made similarly, being, however, more cumbersome and
lengthy.

Below we give a proof-of-concept analytic example to
show how the algorithm (4.10)—(4.12) works. Then, as an
application, we consider a variational data assimilaticbp s
lem for a sea thermodynamics model.

5 Proof-of-concept analytic example

Let us consider a simple evolution problem for the ordinary
differential equation
d

— tap=MAg, te(0,T
dt ¥ g ( ) (5.1) =

o=
whereu € R; a,A€R, g=g(t) >0. Here, in the nota-
tions of section 2, we haw® =R, Y = Ly(0,7T), F(p,\) =
—awp + \g. Let us formulate the data assimilation problem to
find the parametek if we have observation data fgrat the

s Formula (4.12) allows us to estimate the sensitivity of the end of the time interval = 7. We need to minimize the cost

functionals related to the optimal solution after assitiola,
with respect to observation data.

Remark 1. In the above consideration, to show the solv-
ability, we have assumed that the direct and adjoint tangentwhere J(v) =

linear problems of the form

{ %9 ()0

Plizo

f, te(0,T)

{—%‘fi—*—w;(go,x))w* - 9
¢ lep = 0

function
J(A) = inf J(v), (5.2)

1 . .
[ @li—r — pobs|*, @and ¢ is the solution to

[NV}

(5.1) with A = v.
Thus, herewe havE, =R, 1V; =0, Vo =1,Co = pli=r. e
In this case, the optimality system (2.8)—(2.10) has the

form:

de

— t+ap=Ag, te(0,T
o TP =Ag (0,7) (53)

<P|t:0: U,
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F(p,)) equal zero, then it is easily seen thatin this case

dy” ap* =0, te(0,T) is the operator of multiplication by the scalar
dt ’ ’ (5.4)
* T
'l r= Pl —pobss
= H= [ gOlre T 0d = (Wliea (5.12)
* * 0
(g0) = [ att)s* ) =0. (55)
0 Wherew(t) is the solution of the problem (5.1) with=0, s

s Itis easy to see that the problem of data assimilation (5.1)- A=

(5.2) has a unique solution Then after the second step of the algorithm we get

_ g1l _ —2
A= )\opt Pobs — 9007 (56) v=H "F= (w‘t:T) F. (513)
! On the third step of the algorithm, we need to solve
T : : .
whereg — uge—T, fe_“(T—t')g( Nt the problem (4.11). Sincé&% (¢, A) = g, the solution of this 4«

problem has the forni (¢t) = v (¢). Finally, using (4.12),
Indeed, ifA has the form (5.6), the solution of the problem we get the gradient af with respect tapops:
1 (5.1) satisfieso|.—1 = @obs, and the functional from (5.2)

attains its minimal valug = 0. In this casep™ = 0, and the I Poly—r = vp(T) = Y@ F = i (5.14)
optimality system (5.3)-(5.5) is satisfied. dpobs YAT) (1)
Let us consider the response function in the form Moreover, sinces; — (T), then from (5.14) and (5.11) we
T have 45
GleN) = [ o SO
s Leta # 0. After assimilation, taking into account the solution ' \o

of the problem (5.1), we have Thus, the gradient obtained by the algorithm (4.10)—(4.12)

exactly coincides with the value of the gradient obtained in
G, \) = %(1 e~oT) Aopt / t)dt—p1 |, (5.8) (5.9) by direct differentiation, which is the expected fesu

where )\, is given by (5.6). Then, by differentiation @f 6 Dataassimilation problem for a sea thermodynamics s

with respect tap,,, We have the gradient model
B 1 s Consider the sea thermodynamics problem in the form
2 = /g(t)dt — 1 (5.9) (Marchuketal., 1987):
dpobs  ap1 )

+ (U,Grad)T — Div(ar-Grad T) = fr in D x (to,t1),
Let us now apply the algorithm (4.10)—(4.12) to compute

the gradient of the functio@. Sinceg—G =1, (F,(p,\)" =

T T
—a, then on the first step of the algorithm, we solve the prob-—z/Ta— =Qonlg x (to,t1), g— =0o0onTy % (to,t1),
lem (4.10) and get the solution K

T=Tyfort=tyin D,

_ oT
Ur(l*)T_i_ 8_ = QT Oan,op X (t07t1)7
n

o &7 () = (1 — ema(T-1), (5.10)
¢ oT
Taking into account thabG /oA = 0 and (F), (¢, \))"¢* = 5 =00nTm x (to,t1), (6.1)
(9.9%), we getr = (g,¢7) i.e., where T =T(x,y,z,t) is an unknown temperature func-
T T tion,tE(to,tl), (I,y,Z)EDIQX(O,H),QCRZ,H: 55
F— /g(Z)*dt _ 1 /g(t)dt— o (5.11) H(z,y) is the function of the bottom rAeIeiQ = Q(z,y,t)
a is the total heat flux,U = (u,v,w), ar=diag((ar)),
0 0

(ar)11 = (ar)22 = pr, (ar)3s = vr, fr = fr(z,y,2,t) are
On the second step of the algorithm, one need to solvagiven functions. The boundary of the dom&irs 0D is rep-

» the equatio{v = F with the HessiarH defined by the for-  resented as a union of four disjoint patts, I'y op, Lw,c,
mulas (4.4)—(4.6). Since all the second order derivatifes o'y, wherel's = (2 (the unperturbed sea surfacg), o, is
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the liquid (open) part of vertical lateral boundaty,, . is

the solid part of the vertical lateral boundalyy is the sea

bottom, U\~ = (|U, | — U,)/2, andU,, is the normal com-

ponent ofU. The other notations and a detailed description
s of the problem statement can be found in Agoshkov et al.

(2008).

Problem (6.1) can be written in the form of an operator
equation:

T, + LT = F + BQ,
T="Tp,

te (to,tl),
t =1p,

(6.2)

10 Where the equality is understood in the weak sense, namely, 1

(T;,T) + (LT, T) = F(T) + (BQ,T) VT € W (D), (6.3)

in this casel,, F, B are defined by the following relations:

(LT, T) = / (~=TDiv(UT))dD + / U TTdr+

D Tw,op

+ / arGrad(T) - Grad(T)dD,

D

~

F(T) = / QrTdl + / frTdD, (T,,T)= / T,TdD,
D

Tw,op D

(BQ.T)= | QT|,_,do,
/

and the functiongr, Qr, fr, Q are such that equality (6.3)
makes sense. The properties of the operatarere studied
by Agoshkov et al. (2008).

s Due to (6.3), the equation (6.2) is consid-
ered in Y* = Ly(tog,t1;(WH(D))*), and the oper-
ator B: Ly(Q X (to,t1)) = Y* maps the function

Q € La(Q X (to,t1)) into the function BQ € Y* such
that (BQ,T)= [QT|,_,d, VT € W3 (D). Therefore,
Q

» BQ is alinear and bounded functional @a(0,T; W, (D)).

Consider the data assimilation problem for the surface
temperature in the following form: find’ and @ such that s

T,+LT = F+BQ in Dx (to,t1),
T = Ty, t=to (6.4)
JQ) = infJ(v),
where
t1
1@=% [ [1a-Qopinds
to Q
t1
+§//mO\T\Z=O—TobS|2det, (6.5)

to Q

andQ(® = Q) (x,y,t) is a given functiong = const > 0. 4o

For « > 0 this variational data assimilation problem has a
unique solution. The existence of the optimal solution fol-
lows from the classic results of the theory of optimal cohtro
problems (Lions, 1968), because it is easy to show that the
solution to problem (6.1) continuously depends on the flix
Q (a priori estimates are valid in the corresponding func-
tional spaces), the functiondlis weakly lower semicontin-
uous, and the space of admissible contfg)&? x (¢, 1)) is
weakly compact.

For a = 0 the problem does not always have a solution,
but, as was shown by Agoshkov et al. (2008), there is unique
and dense solvability, and it allows one to construct a se-
quence of regularized solutions minimizing the functional
which is related to a sequence of coefficiemts with o, —
0 whenn — oc.

The optimality system determining the solution of the for-
mulated variational data assimilation problem according t
the necessary conditigiradJ = 0 has the form:
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Consider the data assimilation problem for the sea surface

temperature (see Agoshkov et al., 2008). Suppose that th@(Q _ Q(O)) —T*=0 on Qx (to,t1),

function @ € L2(2 X (to,t1)) is unknown in problem (6.1).
Let alsoT,ps(,y,t) be the function o2 = QUOS obtained
2 for ¢ € (tg,t1) by processing the observation data, and this
function in its physical sense is an approximation to the sur
face temperature function dn, i.e. toT|Z=0. We suppose
that Tohs € L2(Q % (Lo, 1)), but the functionl,,s may not
possess greater smoothness and hence it cannot be used
» the boundary condition ohig. We admit the case whéf,,,
is defined only on some subset®fx (¢y,¢;) and denote the
indicator (characteristic) function of this set by . For defi-
niteness sake, we assume thgi. is zero outside this subset.

Ty4+ LT =F+BQ in Dx (to,t),
! (to, 1) (6.6)
T="T, t=t,
60
—(T*); + L*T* = Bmo(Tops — T) in D x (to,t1), 6
T*=0, t=t, '
(6.8)

whereL* is the operator adjoint td.
Here the boundary-value functiof plays the role of s
A from Section 2,p =T, the operatorF' has the form
F(T,Q)=—LT + BQ, and ', = —L, F;, = B. Since the
operatorF (T, Q) is bilinear in this case, the Hessighact-
fag onsome) € Lo(§2x (to,t1)) is defined by the successive
solution of the following problems:
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{%%+L¢ = By, te(to,t1) (6.9)
gﬂt:to = 0



{ _%q;_* “'*L*QS* = —Bmgo, tec (t07t1) (6.10)
¢ |t:t1 = 0,
Hep = arp — B*¢*. (6.11)

To illustrate the above-presented theory, we consider th
problem of sensitivity of functionals of the optimal soturti
Q to the observation%,;s. Let us introduce the following
functional (response function):

5

t1
G(T)= [ dt | k(z,y,t)T(x,y,0,t)ds2, (6.12)
I

o wherek(z,y,t) is a weight function related to the temper-
ature field on the sea surfagce= 0. For example, if we are

V. Shutyaev et al.: Sensitivity in variational data assimilation

and putd = B*¢*.

2) Find by solving{x = ¢ with the Hessian defined bys
(6.9)-(6.11).

3) Solve the direct problem

dG
dTobs

0P

ot +LP2

P2 |t:t0

By,
0.

t€ (to,t1) (6.17)

4) Compute the gradient of the response function as

= m(]PQ‘ (618) 40

z=0"
Formula (6.18) allows us to estimate the sensitivity of the

functionals related to the mean temperature after dateassi

ilation, with respect to the observations on the sea surface

interested in the mean temperature of a specific region of the

seaw for z = 0 in the interval — = < ¢ < t, then as: we take

the function

i —r<t<l

k(z,y,t) = 1/(7”‘33“) if (z,y) ew, I—7<t<i
0 else

15

(6.13)
where mesu denotes the area of the regionThus, the func-
tional (6.12) is written in the form:

1
T £dQ | .
meSw/ (z,y,0,t) )

w

(6.14)

Formula (6.14) represents the mean temperature averag
2 over the time interval — 7 < ¢ < ¢ for a given regionu. The

7 Numerical examplefor the Baltic Sea dynamics
model

45

The numerical experiments have been performed using the
three-dimensional numerical model of the Baltic Sea hy-
drothermodynamics developed at the INM RAS on the base
of the splitting method (Zalesny et al., 2017) and supplied
with the assimilation procedure (Agoshkov et al., 2008) for
the surface temperatuf@;s with the aim to reconstruct the
heat fluxes).

The object of simulation is the Baltic Sea water area. The
parameters of the considered domain and its geographic co-
ordinates can be described in the following waygrid is ss
X6 x 394 x 25 (the latitude, longitude, and depth, respec-
tively). The first point of the "grid C" (Zalesny et al., 2017)

functionals of this type are of most interest in the theory of has the coordinates406° E and53.64° N. The mesh sizes

climate change (Marchuk, 1995; Marchuk et al., 1996).
In our notations the functional (6.12) may be written as

G(T):/(Bk,T)dt:(Bk,T)y, Y = Lo(D % (to,11)).

We are interested in the sensitivity of the functioGall"),
obtained forT" after data assimilation, with respect to the ob-
25 servation functior,s.
By definition, the sensitivity is given by the gradient@f
with respect tdl ,ps:

G 9G T

= — . 6.15
dTops  OT 0T pps ( )

Since2& = Bk, then according to the theory presented in
% Section 4, to compute the gradient (6.15) we need to perfor
the following steps:
1) Fork defined by (6.13) solve the adjoint problem

8q§* I L*gz;*

*
¢ ‘t:tl

Bk,
0

L (bo,tr) (6.16)

in z andy are constant and equal to 0.0625 and 0.03125 de-
grees. The time step i8¢ = 5 minutes. The initial conditione
for the whole model, including), was chosen in the fol-
lowing way: the model was start running with zero initial
conditions and ran with atmospheric forcing obtained from
reanalysis about 20 years, and after that the result of calcu
lation was taken as an initial condition for further runnofg es
the model. The assimilation procedure worked only during
some time windows. To start the assimilation procedure for
the heat flux estimation, the initial condition was taken as a
model forecast for the previous time interval.

The Baltic Sea daily-averaged nighttime surface tempeta-
ture data were used f@t,,,. These are the data of the Danish
Meteorological Institute based on measurements of radiome
ters (AVHRR, AATSR and AMSRE) and spectroradiome-
ters (SEVIRI and MODIS) (Karagali, 2012). Data interpola-

Mion algorithms were used (Zakharova et al., 2013) to cdnver

observations on computational grid of the numerical model
of the Baltic Sea thermodynamics. On each time step the
heat flux was determined at each surface point, therefae, th
number of scalar parameters to be determined were equal to
the number of scalar observations.
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The mean climatic flux obtained from the NCEP (National
Center for Environmental Prediction) reanalysis was taken
for Q(°). We need to mention th&(®) has a physical mean-
ing here, it is not only an initial guess, but a parameter cal-
culated from atmospheric data and taken in the model for

65N

64N

63N

62N

temperature boundary condition on the sea surface when thes

model runs without assimilation procedure.

Using the hydrothermodynamics model mentioned above,
which is supplied with the assimilation procedure for the su
face temperaturd,;s, we have performed calculations for
the Baltic Sea area where the assimilation algorithm worked
only at certain time moments; in this caset; = to + At.

The aim of the experiment was the numerical study of the

60N

56N

58N

5N

56N

55N 15

54N

o

o

5

S

a

S}

a

0

sensitivity of functionals of the optimal solutia@p to obser-
vation errors in the intervdko, 1 ).

Implementing the assimilation procedure, we considered
a system of form (6.6)—(6.8), where (6.6)—(6.7) mean the
finite-dimensional analogues of the corresponding problem
(Agoshkov et al., 2008). For the statement of a data assim-
ilation problem we introduce the cost function (6.5) with a Figure 1. The gradient of the functiona¥(T") [m™?s™']
regularization parameter, which weights the squared dif-
ference|@Q — Q(¥)|2. Since in all numerical experiments
was chosen very small, the impact of the first term in the
functional was also small, and therefd@pevas different from
Q.

We use here the SI units, namely, (kelvin) is used for
temperaturems—" for velocities,mKs~"' for the heat flux
Q. The parametew is defined ass>m~2 to give the both
terms in (6.5) the same dimension. Itis easily seen thaisn th
case, the units of the gradieg&% from (6.18) are defined
asm~ 2571

Let us present some results of numerical experiments.

The calculation results faf, = 50 hours (600 time steps
for the model) are presented in Fig.1 showing the gradient
of the functionalG(T") defined by (6.14) and related to the
mean temperature after data assimilation, with respetigto t
observations on the sea surface, according to (6.16)-)(6.18
Herew=Q,7=At,t =t1, a = 107 5s2m—2.

We can see the sub-areas (in red) in which the functional
G(T') is most sensitive to errors in the observations during
assimilation. The largest values of the gradient¢f") cor-
respond to the points,y lying near the regions with a small
depth (cf. sea topography, Fig.2). One explanation of this
phenomenon may be the fact that in the areas with depths
of about50m, rapid convection occurs in the upper mixed perfect model, with no approximation errors. Therefore, ta
layer. With the assimilation of the surface temperature, in accuracy of the sensitivity estimates given by the algorith
formation is transmitted faster to shallower depths, wiich ~(6.16)— (6.18) are determined by the accuracy of solving the
turn contributes to a higher sensitivity to data in thesegda  Hessian equatiofix = ® (step 2 of the Algorithm). Due
in contrast to deeper regions. to (6.9)- (6.11), this equation is equivalent to a linearadat

Remark 3. We use the discretize-then-optimize approach,assimilation problem, and an approximate solution to the
and for numerical experiments all the presented equation§linimization problem is obtained by an iterative procedure
are understood in a discrete form, as finite-dimensional
analogues of the corresponding problems, obtained after ap The above studies allow us to solve the problem of the def-

proximation. This allows us to consider model equations as dnition of sea sub-areas in which the functional of the opdim
solution is most sensitive to errors in the observationgguress

0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

5 10 50

75 100 200 300 400 500 600

Figure 2. Baltic Sea topographynf]
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variational data assimilation, when the error values atte noAlifanov, O. M., Artyukhin, E. A., and Rumyantseyv, S. V.: Esine

apriori known.

8 Conclusions

In this paper we have considered numerical algorithms to

study the sensitivity of functionals of the optimal solutio

o

of variational data assimilation problem aimed at the re-

Methods for Solving lll-posed Problems with Applicationsih-
verse Heat Transfer Problems, Begell House Publishers; Dan
bury, USA, 1996.

Baker, N. L. and Daley, R.: Observation and background atljoi

sensitivity in the adaptive observation-targeting probl€. J.

R. Meteorol. Soc., 126 (565), 1431-1454, 2000.

Bocquet, M.: Parameter-field estimation for atmosphergpeli- ss
sion: application to the Chernobyl accident using 4D-VarJQ
R. Meteorol. Soc., 138, 664-681, 2012.

construction of unknown parameters of the model. The 0p-chayent, G.: Local stability of the output least square patar
timal solution obtained as a result of assimilation depends  estimation technique, Math. Appl. Comp., 2, 3-22, 1983.
on the observations that may contain uncertainties. ComputCioaca, A., Sandu, A., and de Sturler, E.: Efficient methodsém- o

1

o

ing the gradient of the functionals with respect to obser-

puting observation impact in 4D-Var data assimilation, @am

vations reduces to the solution of a non-standard problem Geosci., 17 (6), 975-990, 2013.
which is a coupled system involving direct and adjoint equa-Daescu, D. N.: On the sensitivity equations of four-dimenal

tions with mutually dependent variables. Solvability oéth

variational (4D-Var) data assimilation, Mon.Weather Rev.

non-standard problem is related to the properties of the Hes_ 136(8), 3050-3065, 2008. 65

15 Sian of the original cost function. An algorithm develope

to compute the gradient of the response function is base(ii3
on the second-order adjoint techniques. Numerical example
for variational data assimilation problem related to sea su

d Dee, D. P.: Bias and data assimilation, Q.J.R. Meteorol.,3&4,

3323-3343, 2005.

ejadze, I., Le Dimet, F.-X., and Shutyaev, V.: On analysisre
covariances in variational data assimilation, SIAM J. E@m-
puting, 30 (4), pp.1847-1874, 2008. 70

face temperature for the Baltic Sea thermodynamics modegejadze, 1. Yu., Copeland, G. J. M., Le Dimet, F.-X., and $aet,

20 demonstrates the result of the gradient computation of the v, p.: Computation of the analysis error covariance in &l
response function associated with the mean surface tempera data assimilation problems with nonlinear dynamics, J. @am
ture. The presented algorithm may be used to determine the Phys., 230, 7923-7943, 2011.
sea sub-areas in which the functionals of the optimal solu-Gejadze, I. Yu., Shutyaev, V. P., and Le Dimet, F.-X.: An@ysror 7
tion are most sensitive to errors in the observations during Covariance versus posterior covariance in variational easim-

variational data assimilation.
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