Articles | Volume 25, issue 2
Research article
02 May 2018
Research article |  | 02 May 2018

Idealized models of the joint probability distribution of wind speeds

Adam H. Monahan

Related authors

How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097,,, 2024
Short summary
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427,,, 2019
Short summary
Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250,,, 2019
Short summary
CSIB v1 (Canadian Sea-ice Biogeochemistry): a sea-ice biogeochemical model for the NEMO community ocean modelling framework
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990,,, 2019
Short summary
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
Gerald M. Lohmann and Adam H. Monahan
Atmos. Meas. Tech., 11, 3131–3144,,, 2018
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97,,, 2024
Short summary
Downscaling of surface wind forecasts using convolutional neural networks
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys., 30, 553–570,,, 2023
Short summary
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by high-frequency radar, and its relation to wind regimes using the maximum-entropy principle
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525,,, 2023
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
EGUsphere,,, 2023
Short summary
Physically constrained covariance inflation from location uncertainty
Yicun Zhen, Valentin Resseguier, and Bertrand Chapron
Nonlin. Processes Geophys., 30, 237–251,,, 2023
Short summary

Cited articles

Battjes, J.: Facts and figures pertaining to the bivariate Rayleigh distribution, Tech. rep., TU Delft, available at: (last access: 7 September 2015), 1969. a
Brown, B. G., Katz, R. W., and Murphy, A. H.: Time series models to simulate and forecast wind speed and wind power, J. Clim. Appl. Meteorol., 23, 1184–1195, 1984. a, b
Brown, R. and Swail, V.: Spatial correlation of marine wind-speed observations, Atmos. Ocean, 26, 524–540, 1988. a
Buell, C. E.: The structure of two-point wind correlations in the atmosphere, J. Geophys. Res., 45, 3353–3366, 1960. a
Cakmur, R., Miller, R., and Torres, O.: Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model, J. Geophys. Res., 109, D07201,, 2004. a, b
Short summary
Bivariate probability density functions (pdfs) of wind speed characterize the relationship between speeds at two different locations or times. This study develops such pdfs of wind speed from distributions of the components, following a well-established approach for univariate distributions. The ability of these models to characterize example observed datasets is assessed. The mathematical complexity of these models suggests further extensions of this line of reasoning may not be practical.