Articles | Volume 25, issue 2
https://doi.org/10.5194/npg-25-335-2018
https://doi.org/10.5194/npg-25-335-2018
Research article
 | 
02 May 2018
Research article |  | 02 May 2018

Idealized models of the joint probability distribution of wind speeds

Adam H. Monahan

Related authors

The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1796,https://doi.org/10.5194/egusphere-2024-1796, 2024
Short summary
How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study
Ruth A. R. Digby, Nathan P. Gillett, Adam H. Monahan, Knut von Salzen, Antonis Gkikas, Qianqian Song, and Zhibo Zhang
Atmos. Chem. Phys., 24, 2077–2097, https://doi.org/10.5194/acp-24-2077-2024,https://doi.org/10.5194/acp-24-2077-2024, 2024
Short summary
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427, https://doi.org/10.5194/npg-26-401-2019,https://doi.org/10.5194/npg-26-401-2019, 2019
Short summary
Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
Fei Lu, Nils Weitzel, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 227–250, https://doi.org/10.5194/npg-26-227-2019,https://doi.org/10.5194/npg-26-227-2019, 2019
Short summary
CSIB v1 (Canadian Sea-ice Biogeochemistry): a sea-ice biogeochemical model for the NEMO community ocean modelling framework
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019,https://doi.org/10.5194/gmd-12-1965-2019, 2019
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Battjes, J.: Facts and figures pertaining to the bivariate Rayleigh distribution, Tech. rep., TU Delft, available at: http://repository.tudelft.nl/view/ir/uuid:034075a7-d837-42d4-9f61-48c4bf9502e6/ (last access: 7 September 2015), 1969. a
Brown, B. G., Katz, R. W., and Murphy, A. H.: Time series models to simulate and forecast wind speed and wind power, J. Clim. Appl. Meteorol., 23, 1184–1195, 1984. a, b
Brown, R. and Swail, V.: Spatial correlation of marine wind-speed observations, Atmos. Ocean, 26, 524–540, 1988. a
Buell, C. E.: The structure of two-point wind correlations in the atmosphere, J. Geophys. Res., 45, 3353–3366, 1960. a
Cakmur, R., Miller, R., and Torres, O.: Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model, J. Geophys. Res., 109, D07201, https://doi.org/10.1029/2003JD004067, 2004. a, b
Download
Short summary
Bivariate probability density functions (pdfs) of wind speed characterize the relationship between speeds at two different locations or times. This study develops such pdfs of wind speed from distributions of the components, following a well-established approach for univariate distributions. The ability of these models to characterize example observed datasets is assessed. The mathematical complexity of these models suggests further extensions of this line of reasoning may not be practical.