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Abstract. The joint probability distribution of wind speeds
at two separate locations in space or points in time com-
pletely characterizes the statistical dependence of these two
quantities, providing more information than linear measures
such as correlation. In this study, we consider two models
of the joint distribution of wind speeds obtained from ide-
alized models of the dependence structure of the horizon-
tal wind velocity components. The bivariate Rice distribu-
tion follows from assuming that the wind components have
Gaussian and isotropic fluctuations. The bivariate Weibull
distribution arises from power law transformations of wind
speeds corresponding to vector components with Gaussian,
isotropic, mean-zero variability. Maximum likelihood esti-
mates of these distributions are compared using wind speed
data from the mid-troposphere, from different altitudes at
the Cabauw tower in the Netherlands, and from scatterom-
eter observations over the sea surface. While the bivariate
Rice distribution is more flexible and can represent a broader
class of dependence structures, the bivariate Weibull distribu-
tion is mathematically simpler and may be more convenient
in many applications. The complexity of the mathematical
expressions obtained for the joint distributions suggests that
the development of explicit functional forms for multivariate
speed distributions from distributions of the components will
not be practical for more complicated dependence structure
or more than two speed variables.

1 Introduction

A fundamental issue in the characterization of atmospheric
variability is that of dependence: how the state of one at-
mospheric variable is related to that of another at a different

position in space, or point in time. The simplest measure of
statistical dependence, the correlation coefficient, is a natu-
ral measure for Gaussian-distributed quantities but does not
fully characterize dependence for non-Gaussian variables.
The most general representation of dependence between two
or more quantities is their joint probability distribution. The
joint probability distribution for a multivariate Gaussian is
well known, and expressed in terms of the mean and co-
variance matrix (e.g. Wilks, 2005; von Storch and Zwiers,
1999). No such general expressions for non-Gaussian multi-
variate distributions exist. Copula theory (e.g. Schlözel and
Friederichs, 2008) allows joint distributions to be constructed
from specified marginal distributions. However, which cop-
ula model to use for a given analysis is not generally known
a priori and is usually determined empirically through a sta-
tistical model selection exercise.

The present study considers the bivariate joint probabil-
ity distribution of wind speeds. As these are quantities which
are by definition bounded below by zero, the joint distribu-
tion and the marginal distributions are non-Gaussian. While
the correlation structure (equivalently, the power spectrum)
of wind speeds in time (e.g. Brown et al., 1984; Schlax et al.,
2001; Gille, 2005; Monahan, 2012b) and in space (e.g. Car-
lin and Haslett, 1982; Nastrom and Gage, 1985; Wylie et al.,
1985; Brown and Swail, 1988; Xu et al., 2011) has been con-
sidered, relatively little attention has been paid to develop-
ing expressions for the joint distribution. Previous studies
have used copula methods to model horizontal spatial depen-
dence of wind speeds for wind power applications (Grothe
and Schnieders, 2011; Louie, 2012; Veeramachaneni et al.,
2015) and dependence of daily wind speed maxima (Schlözel
and Friederichs, 2008). While these earlier analyses have fo-
cused on probabilistic modelling of simultaneous wind speed
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values at different spatial locations in the horizontal, depen-
dence structures in the vertical (e.g. for vertical interpolation
of wind speeds) or in time are also of interest. For example,
an analysis in which the need for an explicit parametric form
for the joint distribution of wind speeds at different altitudes
has arisen is the hidden Markov model (HMM) analysis con-
sidered in Monahan et al. (2015). In an HMM analysis of
continuous variables, it is necessary to specify the paramet-
ric form of the joint distribution within each hidden state. In
Monahan et al. (2015), the joint distribution of wind speeds
at 10 and 200 m and the potential temperature difference be-
tween these altitudes was modelled as a multivariate Gaus-
sian distribution, despite the fact that for at least the speeds
this distribution cannot be strictly correct. This pragmatic
modelling approximation was made because of the absence
of a more appropriate parametric distribution for the quanti-
ties being considered. The alternative approach of using the
wind components at the two levels (for which the multivari-
ate Gaussian model may be a better approximation) instead
of the speeds directly has the downside of increasing the di-
mensionality of the state vector from three to five, dramat-
ically increasing the number of parameters to be estimated
(with the covariance matrices in particular increasing from 9
to 25 elements) and reducing the statistical robustness of the
results.

A number of previous studies have constructed univari-
ate speed distributions starting from models for the joint dis-
tribution of the horizontal components (e.g. Cakmur et al.,
2004; Monahan, 2007; Drobinski et al., 2015). One use-
ful benefit of this approach is that it allows the statistics of
the speed and the components to be related to each other.
The specific goal of the present study is to extend this ap-
proach to bivariate distributions, constructing models of the
joint probability distribution of wind speeds that are directly
connected to the joint distributions of the horizontal com-
ponents of the wind. As the following results will demon-
strate, generalizing this approach to the bivariate speed dis-
tribution results in rather complicated mathematical expres-
sions. Expressions for multivariate distributions of more than
two speeds will be even more complicated, and may not be
analytically tractable. Through the analysis of the bivariate
speed distribution, we will probe how far the development of
closed-form, analytic expressions for parametric speed distri-
butions based on distributions of components can practically
be extended.

Both Weibull and Rice distributions have been used to
model the univariate wind speed distribution (cf. Carta et al.,
2009; Monahan, 2014; Drobinski et al., 2015), and models of
multivariate distributions with Weibull or Ricean marginals
have been developed (e.g. Crowder, 1989; Lu and Bhat-
tacharyya, 1990; Kotz et al., 2000; Sagias and Karagianni-
dis, 2005; Yacoub et al., 2005; Mendes and Yacoub, 2007;
Villanueva et al., 2013). Much of this work has been done
in the context of wireless communications (Sagias and Kara-
giannidis, 2005; Yacoub et al., 2005; Mendes and Yacoub,

2007): the present study builds upon the results of these ear-
lier analyses.

The two probability density functions (pdfs) we will con-
sider, the bivariate Rice and Weibull distributions, both start
with simple assumptions regarding the distributions of the
wind components. The bivariate Rice distribution follows di-
rectly from the assumption of Gaussian components with
isotropic variance, but nonzero mean. In contrast, the bi-
variate Weibull distribution is obtained from nonlinear trans-
formations of the magnitudes of Gaussian, isotropic, mean-
zero components. While the univariate Weibull distribution
has been found to generally be a better fit to observed wind
speeds than the univariate Rice distribution (particularly over
the oceans, e.g. Monahan, 2006, 2007), the direct connec-
tion of the Rice distribution to the distribution of the compo-
nents (which the Weibull distribution does not have) is useful
from a modelling and theoretical perspective (e.g. Cakmur
et al., 2004; Monahan, 2012a; Culver and Monahan, 2013;
Sun and Monahan, 2013; Drobinski et al., 2015). The six-
parameter bivariate Rice distribution that we will consider is
more flexible than the five-parameter bivariate Weibull dis-
tribution, and able to model a broader range of dependence
structures. Furthermore, it is directly connected to the uni-
variate distributions and dependence structure of the wind
components. However, the bivariate Weibull distribution is
mathematically much simpler than the bivariate Rice distri-
bution and easier to use in practice. Other flexible bivariate
distributions for non-negative random variables exist, such
as the α-µ distribution discussed in Yacoub (2007). Because
the Weibull and Rice distributions are common models for
the univariate wind speed distributions, this study will focus
specifically on their bivariate generalizations.

The bivariate Rice and Weibull distributions are developed
in Sect. 2, starting from discussion of the bivariate Rayleigh
distribution (which is a limiting case of both of the other
models). In this section, we repeat some of the formulae ob-
tained by Sagias and Karagiannidis (2005), Yacoub et al.
(2005), and Mendes and Yacoub (2007) for completeness
and because of notational differences between this study and
the earlier ones. In Sect. 3, the ability of these distributions
to model wind speed data from the middle troposphere, and
from the near-surface flow over land and the ocean, is con-
sidered. Examples of dependence structures in both space
(horizontally and vertically) and in time are considered. A
discussion and conclusions are presented in Sect. 4.

2 Empirical models of the bivariate wind speed
distribution

As a starting point for developing models of the bivariate
wind speed distribution, we consider the joint distribution of
the horizontal wind vector components ui = (ui,vi), i = 1, 2
(where the subscripts i denote wind vectors at two different
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locations, two different points in time, or both). In particular,
we assume that

1. the two orthogonal wind components are marginally
Gaussian with isotropic and uncorrelated fluctuations:(
ui
vi

)
∼N

[(
ui
vi

)
,

(
σ 2
i 0
0 σ 2

i

)]
i = 1,2, (1)

2. and the cross-correlation matrix of the two vectors is

corr(u1,u2)=

(
corr(u1,u2) corr(u1,v2)

corr(v1,u2) corr(v1,v2)

)
(2)

=

(
µ1 µ2
−µ2 µ1

)
=

(
ρ cosψ ρ sinψ
−ρ sinψ ρ cosψ

)
,

where we have expressed the correlations in
both Cartesian and polar coordinates: (µ1,µ2)=

(ρ cosψ,ρ sinψ), with 0≤ ρ =
(
µ2

1+µ
2
2
)1/2
≤ 1.

This assumed correlation structure implies that the
correlation matrix becomes diagonal when the vector
u2 is rotated through the angle −ψ :

corr(u1,R(−ψ)u2)=

(
ρ 0
0 ρ

)
, (3)

where

R(−ψ)u2 =

(
cosψ sinψ
−sinψ cosψ

)(
u2
v2

)
=

(
u2 cosψ + v2 sinψ
−u2 sinψ + v2 cosψ

)
. (4)

The joint distribution of the horizontal components result-
ing from these assumptions is

p(u1,u2,v1,v2)=
1

(2π)2σ 2
1 σ

2
2 (1− ρ

2)

× exp

(
−

1
2(1− ρ2)

[
(u1− u1)

2

σ 2
1

+
(v1− v1)

2

σ 2
1

+
(u2− u2)

2

σ 2
2

+
(v2− v2)

2

σ 2
2

−
2µ1[(u1− u1)(u2− u2)+ (v1− v1)(v2− v2)]

σ1σ2

−
2µ2 [(u1− u1)(v2− v2)− (v1− v1)(u2− u2)]

σ1σ2

])
(5)

(Mendes and Yacoub, 2007).
Note that only considering the horizontal components of

the wind vector implicitly restricts the resulting distributions
to timescales sufficiently long that the vertical component of
the wind contributes negligibly to the speed.

2.1 Bivariate Rayleigh distribution

The joint distributions of the speedswi =
√
u2
i + v

2
i obtained

from the pdf Eq. (5) when both vector wind components are
mean-zero is the bivariate Rayleigh distribution (e.g. Bat-
tjes, 1969). Transforming variables to wind speed wi and di-
rection θi = tan−1(vi/ui), the joint distribution (Eq. 5) with
ui = vi = 0, i = 1,2, becomes

p(w1,w2,θ1,θ2)=

w1w2

(2π)2σ 2
1 σ

2
2 (1− ρ

2)
exp

(
−

1
2(1− ρ2)

[
w2

1

σ 2
1
+
w2

2

σ 2
2

])

× exp
(

ρ

1− ρ2
w1w2

σ1σ2
cos(θ1− θ2+ψ)

)
. (6)

Integrating over the wind directions to obtain the marginal
distribution for the wind speeds, we obtain

p(w1,w2)=

w1w2

σ 2
1 σ

2
2 (1− ρ

2)
exp

(
−

1
2(1− ρ2)

[
w2

1

σ 2
1
+
w2

2

σ 2
2

])

Io

(
ρ

1− ρ2
w1w2

σ1σ2

)
, (7)

where we have used the fact that

2π∫
0

eα cosθ coskθ dθ = 2πIk(α), (8)

where Ik(z) is the modified Bessel function of order k. Note
that the correlation angle ψ drops out after integration over
θ1 and θ2. As a result, for the bivariate Rayleigh distribution,
p(w1,w2) depends only on the three parameters (σ1,σ2,ρ).

For ρ = 0, p(w1,w2) factors as the product of the
marginal distributions of w1 and w2:

p(w1,w2)=

[
w1

σ 2
1

exp

(
−
w2

1

2σ 2
1

)][
w1

σ 2
1

exp

(
−
w2

1

2σ 2
1

)]
, (9)

and the wind speeds are independent. As ρ→ 1, we can use
the asymptotic result

I0(x)∼
ex
√

2πx
(x� 1) (10)

to show that

p(w1,w2)→
w1

σ 2
1

exp

(
−
w2

1

2σ 2
1

)
δ

(
w1

σ1
−
w2

σ2

)
, (11)

where δ(·) is the Dirac delta function. In this limit, w1 and
w2 are perfectly correlated and Rayleigh distributed.

www.nonlin-processes-geophys.net/25/335/2018/ Nonlin. Processes Geophys., 25, 335–353, 2018



338 A. H. Monahan: Joint wind speed distributions

00.5
0

1

2

3
w
2
/σ
2

0 1 2 3

0
0.5

ρ = 0

0 1 2 3
w
1
/σ
1

0

1

2

3

00.5
0

1

2

3

w
2
/σ
2

0 1 2 3

0
0.5

ρ = 0.5

0 1 2 3
w
1
/σ
1

0

1

2

3

00.5
0

1

2

3

w
2
/σ
2

0 1 2 3

0
0.5

ρ = 0.85

0 1 2 3
w
1
/σ
1

0

1

2

3

Figure 1. Example bivariate Rayleigh distributions p(w1,w2) for ρ = 0,0.5, and 0.85, with w1 and w2 scaled respectively by σ1 and σ2.
The upper and left subpanels show the marginal distributions of w1 and w2 respectively. These marginal distributions are the same for all
three panels.

Moments of the bivariate Rayleigh distribution are given
by

E
{
wm1 w

n
2
}
= (12)

2m/22n/2σm1 σ
n
2 0

(
1+

m

2

)
0
(

1+
n

2

)
2F1

(
−
m

2
,−
n

2
,1;ρ2

)
,

where 2F1(α,β,γ ;z) is the hypergeometric function (Grad-
shteyn and Ryzhik, 2000). In particular, we have

mean(wi)= σi

√
π

2
, (13)

var(wi)= 2σ 2
i

(
1−

π

4

)
, (14)

corr(w1,w2)=
π

4−π

(
2F1

[
−

1
2
,−

1
2
,1;ρ2

]
− 1

)
. (15)

Because 2F1(−1/2,−1/2,1;ρ2) is an increasing function
of ρ2 with 2F1(−1/2,−1/2,1;0)= 1, corr(w1,w2) must be
non-negative for the bivariate Rayleigh distribution.

Plots of p(w1,w2) for the three values ρ = 0, 0.5, and 0.85
are presented in Fig. 1, along with the marginal distributions
of w1 and w2 (which are the same for all three panels). The
marginal distributions are positively skewed and the contours
of the joint distributions are more tightly concentrated below
and to the left of their peaks than elsewhere. As expected,
the distributions become more tightly concentrated around
the 1 : 1 line as the dependence parameter ρ increases.

2.2 Bivariate Rice distribution

The assumptions leading to the bivariate Rayleigh distribu-
tion are too restrictive to model observed wind speeds in most
circumstances. A more general distribution results from as-
suming that the wind components are Gaussian, isotropic,
and uncorrelated, but with nonzero mean (Eq. 5).

Changing variables to wind speed wi and direction θi , the
joint distribution becomes

p(w1,w2,θ1,θ2)=
w1w2

(2π)2σ 2
1 σ

2
2 (1− ρ

2)

×exp

(
−

1
2(1− ρ2)

[
(w2

1 + u
2
1+ v

2
1)

σ 2
1

+
(w2

2 + u
2
2+ v

2
2)

σ 2
2

−
2µ1(u1u2+ v1v2)

σ1σ2
−

2µ2(u1v2− v1u2)

σ1σ2

])
×exp

([
w1

σ1
a1 cosθ1+

w2

σ2
a2 cosθ2+

w1

σ1
b1 sinθ1+

w2

σ2
b2 sinθ2

+
1

1− ρ2
w1w2

σ1σ2
(µ1 cos(θ1− θ2)+µ2 sin(θ1− θ2))

])
, (16)

where

a1 =
1

1− ρ2

(
u1

σ1
−µ1

u2

σ2
−µ2

v2

σ2

)
=

1
1− ρ2

[
U1

σ1
cosφ1− ρ

U2

σ2
cos(φ2−ψ)

]
, (17)

b1 =
1

1− ρ2

(
v1

σ1
−µ1

v2

σ2
+µ2

u2

σ2

)
=

1
1− ρ2

[
U1

σ1
sinφ1− ρ

U2

σ2
sin(φ2−ψ)

]
, (18)

a2 =
1

1− ρ2

(
u2

σ2
−µ1

u1

σ1
+µ2

v1

σ1

)
=

1
1− ρ2

[
U2

σ2
cosφ2− ρ

U1

σ1
cos(φ1+ψ)

]
, (19)

b2 =
1

1− ρ2

(
v2

σ2
−µ1

v1

σ1
−µ2

u1

σ1

)
=

1
1− ρ2

[
U2

σ2
sinφ2− ρ

U1

σ1
sin(φ1+ψ)

]
, (20)

and where we have defined the magnitude and direction of
the mean vector wind:

(ui,vi)= U i(cosφi,sinφi). (21)

The marginal distribution for the wind speeds is obtained
by integrating the joint distribution over θ1 and θ2. To evalu-
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ate this integral, we make use of the result

1
(2π)2

2π∫
0

2π∫
0

exp[α1 cosθ1+α2 cosθ2+β1 sinθ1+β2 sinθ2

+γ cos(θ1− θ2+ψ)
]

dθ1dθ2

=

∞∑
k=0

εk cos
[
k

(
tan−1 β1

α1
− tan−1 β2

α2
+ψ

)]
× Ik

(√
α2

1 +β
2
1

)
Ik

(√
α2

2 +β
2
2

)
Ik(γ ), (22)

where

εk =

{
1 k = 0
2 k 6= 0 (23)

and it is important that tan−1(b/a) be evaluated as the angle
between the vector (a,b) and the vector (1,0) (that is, as the
four-quadrant inverse tangent). Equation (22) follows from
the Fourier series

eccosθ
=

∞∑
k=0

εkIk(c)coskθ (24)

along with repeated use of trigonometric identities and the
integral Eq. (8).

Finally, we obtain the expression for the bivariate Rice dis-
tribution (Mendes and Yacoub, 2007)

p(w1,w2)=
w1w2

σ 2
1 σ

2
2 (1− ρ

2)

× exp

(
−

1
2(1− ρ2)

[
(w2

1 + u
2
1+ v

2
1)

σ 2
1

+
(w2

2 + u
2
2+ v

2
2)

σ 2
2

−
2µ1(u1u2+ v1v2)

σ1σ2
−

2µ2(u1v2− v1u2)

σ1σ2

])
×

∞∑
k=0

εk cos
[
k

(
tan−1 b1

a1
− tan−1 b2

a2
+ tan−1µ2

µ1

)]
× Ik

(
w1

σ1

√
a2

1 + b
2
1

)
Ik

(
w2

σ2

√
a2

2 + b
2
2

)
× Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)
. (25)

Expressed in terms of the magnitude and direction of the
mean wind vectors,

p(w1,w2)=
w1w2

σ 2
1 σ

2
2 (1− ρ

2)

× exp

(
−

1
2(1− ρ2)

[
w2

1 +U
2
1

σ 2
1
+
w2

2 +U
2
2

σ 2
2

−
2ρU1U2 cos(φ1−φ2+ψ)

σ1σ2

])

×

∞∑
k=0

[
εk cos(kν)Ik

(
w1

σ1

√
a2

1 + b
2
1

)
Ik

(
w2

σ2

√
a2

2 + b
2
2

)
×Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)]
, (26)

where

ν = (27)

tan−1
(1− ρ2)U1U2

σ1σ2
sin(φ1−φ2+ψ)

(1+ ρ2)U1U2
σ1σ2

cos(φ1−φ2+ψ)− ρ

(
U2

1
σ 2

1
+

U2
2

σ 2
2

)
and√
a2
i + b

2
i = (28)

1
1− ρ2

[
U2
i

σ 2
i

+ ρ2U
2
3−i

σ 2
3−i
− ρ

2U1U2

σ1σ2
cos(φ1−φ2+ψ)

] 1
2

.

When numerically evaluating the bivariate Rice distribution,
it is convenient to transform the infinite series in Eqs. (25)
and (26) into an integral which is then approximated numer-
ically (Appendix A).

Note that p(w1,w2) depends on the relative orientation
of the mean wind vectors and the correlation angle ψ only
through the combination φ1−φ2+ψ . Because of this symme-
try, the quantities φ1−φ2 and ψ cannot be determined indi-
vidually from wind speed data alone. As a result, p(w1,w2)

is determined by six parameters: (U1,σ1,U2,σ2,ρ,φ1−φ2+

ψ). For particular applications, it may be appropriate to fix
either φ1−φ2 or ψ , allowing the other angle to be esti-
mated from data. For example, when considering the tem-
poral dependence structure of winds assumed to have sta-
tionary statistics, it can be assumed that φ1−φ2 = 0. The
bivariate Rice distribution also has the discrete symmetry
that it is invariant under the transformation φ1−φ2+ψ→

−(φ1−φ2+ψ). Note that these symmetries are in addition
to the invariance of the distribution of components (Eq. 5) to
the rotation of the coordinate system θi→ θi +1θ , i = 1,2,
under which the angles φ1−φ2 and ψ are individually invari-
ant.

Integrating over w2 to obtain the marginal distribution for
w1 we obtain the univariate Rice distribution

∞∫
0

p(w1,w2) dw2 =
w1

σ 2
1

exp

(
−
w2

1 +U
2
1

2σ 2
1

)
I0

(
w1U1

σ 2
1

)
, (29)

with mean and variance

mean(w1)= σ1

√
π

2 1F1

(
−

1
2
,1,−

U2
1

2σ 2
1

)
(30)

var(w1)= 2σ 2
1 +U

2
1− σ

2
1
π

2 1F
2
1

(
−

1
2
,1,−

U2
1

2σ 2
1

)
(31)
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(with equivalent expressions for w2 obtained by integrating
over w1), where 1F1(α;β;z) is the confluent hypergeomet-
ric function (Gradshteyn and Ryzhik, 2000). Equation (29)
follows from Eq. (25) using the integral (Gradshteyn and
Ryzhik, 2000)

∞∫
0

xe−ax
2
Ik(bx)Ik(cx) dx =

1
2a

exp
(
b2
+ c2

4a

)
Ik

(
bc

2a

)
, (32)

Neumann’s theorem (Watson, 1922)

∞∑
k=0

εkIk(x)Ik(y)coskφ = I0

(√
x2+ y2+ 2xy cosφ

)
, (33)

and the fact that

cosν =

(1+ ρ2)U1
σ1

U2
σ2

cos(φ1−φ2+ψ)− ρ

(
U2

1
σ 2

1
+

U2
2

σ 2
2

)
(1− ρ2)2

√
(a2

1 + b
2
1)
(
a2

2 + b
2
2
) . (34)

Note that each wind speed marginal distribution depends
only on the magnitude of the mean wind vector, while the
joint distribution also depends on the angle between the two
mean wind vectors. Furthermore, as ρ→ 0 only the first term
contributes to the infinite series in Eq. (25), and the joint dis-
tribution reduces to the product of the marginals.

The joint moments of the bivariate Rice distribution can
be evaluated using the Taylor series expansion:

Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)
= (35)

∞∑
j=0

1
j !(j + k)!

(
ρ

2(1− ρ2)

)2j+k(
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,

which allows the double integral defining the moments to
factorize as the products of individual integrals over w1 and
w2 that can be evaluated using

∞∫
0
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2
Ik(βx) dx = (36)
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The resulting expression for the joint moments is
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(Mendes and Yacoub, 2007). When the mean vector winds
are equal to zero, only the k = 0 terms contribute to this ex-
pression and Eq. (12) is recovered.

Defining the variables Vi = U i/
√

2σi , the correlation co-
efficient between w1 and w2 is given by
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where
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The correlation coefficient corr(w1,w2) depends only on
the four quantities (U1/σ1,U2/σ2,φ1−φ2+ψ,ρ). Monahan
(2012b) considered the correlation structure of wind speeds
using the approximation corr(w1,w2)' corr

(
w2

1,w
2
2
)
. The

assumed covariance structure of the wind components then
results in the approximate expression:
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Figure 2. Comparison of the correlation coefficient corr(w1,w2) for bivariate Rice distributed variables (Eq. 38) with the approximate
expression Eq. (40) for the parameter values (U1/σ1,U2/σ2,φ1−φ2+ψ)= (3,2,0) and (0.5,4,0).

Plots of the correlation coefficient (Eq. 38) and the approx-
imation (Eq. 40) as functions of ρ are shown in Fig. 2 for
(U1/σ1,U2/σ2,φ1−φ2+ψ) = (3,2,0) and (1,5,0). Agreement
between the exact and approximate values of the correlation
coefficient is reasonably good in both cases, with the largest
discrepancies generally occurring for larger absolute values
of ρ. Note that negative wind speed correlation values are
permitted by the bivariate Rice distribution.

Examples of the joint Rice pdf (and the associated
marginals) are presented in Fig. 3 for (U1,σ1,U2,σ2)=

(6,4,2,5) and (ρ,φ1−φ2+ψ)= (0.85,π),(0,0), and
(0.85,0). By construction, the marginal distributions are the
same in each panel. The distributions of both w1 and w2
are positively skewed, and take respective maxima at val-
ues of about σ1 and just less than 2σ2. For the different
values of the dependence parameter ρ, the joint distribu-
tions have considerably different shapes. The joint distribu-
tion for (ρ,φ1−φ2+ψ)= (0.8,π) describes (weakly) nega-
tively correlated variables with a nonlinear dependence struc-
ture evident in ridges of enhanced probability extending to
the left and right upward from the probability maximum. For
(ρ,φ1−φ2+ψ)= (0,0), probability contours are concen-
trated towards smaller values of w1 and w2 (as is the case for
the marginal distributions). Finally, w1 and w2 are evidently
positively correlated for (ρ,φ1−φ2+ψ)= (0.8,0), with a
slight curvature in the shape of the distribution indicating the
existence of some nonlinear dependence.

Although the bivariate Rice distribution differs from the
bivariate Rayleigh distribution only by allowing for nonzero
mean wind vector components, the resulting expressions for
the joint pdf (Eq. 25) and the moments (Eq. 37) are much
more complicated for the bivariate Rice than the bivariate
Rayleigh. Furthermore, while the univariate Rice distribu-
tion is a convenient model for the pdf of wind speed, ob-
served winds show clear deviation from Ricean behaviour
(e.g. Monahan, 2006, 2007). We will therefore consider an-
other model of the bivariate wind speed distribution with
Weibull marginals, which turns out to result in simpler math-

ematical expressions (at the cost of a more artificial deriva-
tion than that of the bivariate Rice distribution).

2.3 Bivariate Weibull distribution

As in Sagias and Karagiannidis (2005) and Yacoub et al.
(2005), we obtain the bivariate Weibull distribution from the
bivariate Rayleigh distribution through separate power law
transformations of w1 and w2. The pdf of a Weibull dis-
tributed variable is

p(x)=
b

a

(x
a

)b−1
exp

(
−

[x
a

]b)
, (41)

with moments

E
{
xm
}
= am0

(
1+

m

b

)
, (42)

where a and b are denoted the scale and shape parameters re-
spectively. The Rayleigh distribution is a special case of the
Weibull distribution with a =

√
2σ and b = 2. Weibull dis-

tributed variables remain Weibull under a power law transfor-
mation, with suitably modified scale and shape parameters:
if x is Weibull with scale parameter a and shape parameter
b, xk will be Weibull with scale parameter ak and shape pa-
rameter b/k. A joint wind speed distribution with Weibull
marginal distributions can therefore be constructed from a
joint Rayleigh distribution using the appropriate power law
and scale transformations.

If we start with (x1,x2) as bivariate Rayleigh distributed
with σi = 1/

√
2, i = 1,2, we obtain marginal Weibull dis-

tributions with specified scale and shape parameters through
the transformations

wi = aix
2/bi
i . (43)

The joint pdfs transform as

p(w1,w2)=

∣∣∣∣∂x1w1 ∂x2w1
∂x1w2 ∂x2w2

∣∣∣∣−1

p(x1,x2) (44)
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Figure 3. As in Fig. 1 for the bivariate Rice distribution with (U1,σ1,U2,σ2)= (6,4,2,5) and (ρ,φ1−φ2+ψ)= (0.8,π),(0,0), and
(0.8,0).

and so we obtain the bivariate Weibull distribution
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An analogous approach to constructing bivariate Weibull dis-
tributions through nonlinear transformations of a bivariate
Gaussian was followed in Villanueva et al. (2013); the re-
sulting expressions are considerably more complicated than
those considered here.

Evidently, p(w1,w2) factorizes into the product of the
marginal distributions as ρ→ 0. As ρ→ 1, we can use
Eq. (10) to make the approximation
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where the last equality follows from the fact that

δ (f (x)−α)=
1

f ′(α)
δ
(
x− f−1(α)

)
. (47)

As expected, w1 and w2 are completely dependent in the
limit that ρ→ 1 (although they are not perfectly correlated
if b1 6= b2 as the functional relationship

w2 = a2

(
w1

a1

)b1/b2

(48)

between the two variables will be nonlinear).
The relatively simple form of the bivariate Weibull distri-

bution permits a relatively simple expression for the condi-
tional distribution

p(w2|w1)=
p(w1,w2)
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The factor in the second set of braces characterizes how con-
ditioning on the value of w1 changes the distribution of w2
from its marginal distribution (and corresponds to a copula
density; e.g. Schlözel and Friederichs, 2008). Note that for
w1 sufficiently large we can write

p(w2|w1)'
1√
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For ρ not too close to zero, the conditional distribution for
large w1 is concentrated around the nonlinear regression
curve(
w2
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)b2
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. (51)

Computing the moments, we obtain
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(Sagias and Karagiannidis, 2005; Yacoub et al., 2005). The
correlation coefficient is then given by
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For b1,b2 > 1 (the relevant range of shape parameters for
wind speeds), 2F1(−1/b1,−1/b2,1;ρ2) is an increasing
function of ρ2 with 2F1(−1/b1,−1/b2,1;0)= 1. Therefore,
the bivariate Weibull distribution is unable to represent situ-
ations in which the wind speeds are negatively correlated.

Examples of the bivariate Weibull distribution for
(a1,b1,a2,b2)= (4,1.5,5,7) and values of ρ = 0,0.7, and
0.95 are shown in Fig. 4. Again, the marginal distributions
in all three cases are the same by construction. The distribu-
tion of w1 is positively skewed with a maximum near a value
of w1 = 0.5a1, while that of w2 is negatively skewed with a
maximum near w2 = a2. For ρ = 0 the joint distribution is
simply the product of the marginals. As ρ increases, w1 and
w2 become positively correlated - although the correlation is
weak even for ρ = 0.7 for this set of parameter values. At the
value of ρ = 0.95, while the correlation of the two variables
is only moderate, a strong nonlinear dependence is evident in
the concentration of the distribution around the curve given
by Eq. (48).

3 Fits of bivariate Rice and Weibull distributions to
observed wind speeds

Many wind datasets from different locations are available,
and it is impracticable to consider joint distributions of wind
speeds from even a small fraction of these. In this section,
we will consider examples of the joint distribution of wind
speeds using data from a representative range of settings. Bi-
variate distributions of wind speeds at both different loca-
tions in space and different points in time will be considered.

The sampling of the wind speeds considered will be tem-
poral (that is, individual samples will correspond to a spe-
cific time for spatial joint pdfs and a specific pair of times
for temporal joint pdfs). Best-fit values of the parameters of
the bivariate Weibull and Rice distributions we present were
obtained numerically as maximum likelihood estimates (Ta-
ble 1), with φ1−φ2 set to zero. Goodness-of-fit of the dis-
tributions was assessed using a statistical test described in
Appendix B. In order to distinguish how well the paramet-
ric joint distributions model the marginal distributions from
how well they represent dependence between variables, the
goodness-of-fit analyses were repeated for each pair of time
series with the values of one of the pair shuffled in time. This
shuffling destroys the dependence structure without affecting
the distributions of the marginals. Use of a bivariate analysis
rather than separate univariate goodness-of-fit tests for the
marginals allows direct comparisons of p-values, as exactly
the same test is used for the original and shuffled data.

3.1 Wind speeds at 500 hPa

We first consider the joint distribution of 00Z December,
January, and February 500 hPa wind speeds from 1979 to
2014. These data were taken from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim
Reanalysis (Dee et al., 2011), subsampled to every sec-
ond day to minimize the effect of serial dependence on the
goodness-of-fit test (Monahan, 2012b). The wind speed data
were computed as the magnitude of zonal and meridional
components.

The joint distributions of wind speeds at four pairs of lat-
itudes along 216◦W are presented in Fig. 5. A moderately
strong negative correlation (r =−0.55) is evident between
wind speeds at (39◦ S, 216◦W) and (54.75◦ S, 216◦W)
(Fig. 5a). Because it is unable to model a negative corre-
lation between wind speeds, the best-fit bivariate Weibull
pdf differs substantially from the distribution of the observed
winds (Fig. 5e). The goodness-of-fit test correspondingly re-
jects the null hypothesis that the observations are drawn from
this distribution (p = 0). In contrast, the bivariate Rice dis-
tribution provides a reasonable model of the joint distribu-
tion of wind speeds at these two locations (Fig. 5i) and the
goodness-of-fit test provides no evidence that these data are
statistically incompatible with this distribution (p = 0.31).
For wind speeds at these two locations, the bivariate Rice
distribution is evidently a better model than the bivariate
Weibull distribution.

In contrast, for wind speeds at (12◦ N, 216◦W) and
(15.75◦ N, 216◦W), the null hypotheses of being drawn from
either the bivariate Rice or Weibull distributions are rejected
at the 95 % significance level for both distributions. These
wind speeds are weakly correlated (r = 0.37) but show evi-
dence of nonlinear dependence. The joint pdf of the observed
speeds is characterized by two ridges of high probability ex-
tending to the right, upward and downward away from the
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Figure 4. As in Fig. 1 for the bivariate Weibull distribution with (a1,b1,a2,b2)= (4,1.5,5,7) and ρ = 0,0.7, and 0.95 and the speeds
w1,w2 scaled respectively by the Weibull scale parameters a1, a2.

region of maximum probability (Fig. 5b, f, j). These ridges
are not captured by either of the best-fit bivariate Weibull or
Rice distributions, although a hint of this structure is evident
in the Rice distribution. While the fit of one or both of these
parametric distributions to these observed wind speed data
may be sufficiently good for practical applications, neverthe-
less we can confidently exclude the possibility that these data
are drawn from either distribution.

The wind speeds at (3◦ S, 216◦W) and (0.75◦ N, 216◦W)
are correlated (r = 0.68) and their scatter clusters around a
straight line extending away from the origin (Fig. 5c). Both
the best-fit bivariate Weibull and Rice distributions appear to
the eye to be good fits to the data (Fig. 5g, k), and in nei-
ther case can the null hypothesis be rejected that the data are
drawn from these distributions. Only small differences exist
between the two best-fit distributions for these data.

Finally, the wind speeds at (15◦ S, 216◦W) and (45◦ S,
216◦W) are uncorrelated (r = 0.06) and fit sufficiently well
by both the bivariate Weibull and Rice distributions (Fig. 5d,
h, l) that in neither case is the null hypothesis rejected. As in
the previous example, the bivariate best-fit Rice and Weibull
distributions are essentially indistinguishable for these data.

Considering the spatial correlation structure of these
500 hPa winds, we find cases in which one distribution (the
Rice) is evidently a better fit to the data than the other (the
Weibull), in which neither distribution provides a statistically
significant fit to the data, and in which both distributions fit
the data equally well. p-values from the analyses with tem-
porally shuffled data, quoted in parentheses in Fig. 5, show
that for none of the four pairs of wind speeds considered can
the null hypotheses of univariate Weibull or univariate Rice
distributions for the pair of marginals be rejected. This re-
sult indicates that for these data the rejection of the full bi-
variate distributions occurs because of a failure to adequately
represent the dependence structure between the two random
variables.

The temporal dependence structure of the wind speed
at (39◦ S, 216◦W) is illustrated in Fig. 6. As with the
previous calculations, the pairs of lagged wind speeds

(w(tn),w(tn+s)) were subsampled to 2-day resolution to
minimize the effect of serial dependence on the results of
the goodness-of-fit tests. As the lag increases, the value of
the dependence parameter ρ decreases as expected for both
the Weibull and Rice distributions (Fig. 6h, l). For most lags,
the null hypothesis of the Weibull distribution as a model
for the joint distribution is rejected (p < 0.05; Fig. 6d). The
rejection of the null hypothesis of a bivariate Weibull distri-
bution is most robust for lags shorter than 3 days. In con-
trast, the null hypothesis of a bivariate Rice distribution is
rejected less often than it is not – although p < 0.05 for
more than one-third of the lags (Fig. 6d). Inspection of the
example distributions shown demonstrates that the bivariate
Weibull distributions are broader around their principal axis
for small to intermediate wind speeds in a way that is not
consistent with observations (Fig. 6e–g). Such structures are
not seen in the best-fit Rice distributions (Fig. 6i–k). Note
that for lags of 0.5 and 1.5 days the observed distributions
suggest a flaring out of the joint distribution for large wind
speeds that is accounted for by neither the bivariate Weibull
nor Rice distributions. There is good evidence that these data
were not drawn from a bivariate Weibull distribution, and the
evidence that they are drawn from a bivariate Rice distribu-
tion is not strong. p-values of fits obtained after shuffling of
the lagged wind speed time series (in brackets in Fig. 6e–
g, i–k and dashed lines in Fig. 6d) are generally larger than
those of the unshuffled data: with a few exceptions (e.g. a
lag of 1.75 days), the rejection of the null hypothesis of the
full dataset being drawn from either of the parametric distri-
butions considered is not associated with a failure to fit the
marginals.

3.2 Wind speeds over land at 10 m and 200 m

We next consider wind speeds at altitudes of 10 and 200 m
measured from a 213 m tower in Cabauw, Netherlands
(51.971◦ N, 4.927◦ E), maintained by the Cabauw Experi-
mental Site for Atmospheric Research (CESAR; van Ulden
and Wieringa, 1996) with 10 min resolution from 1 January
2001 through 31 December 2012. We will focus on data from
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Table 1. Maximum likelihood parameter estimates for the wind speed data shown in Figs. 5, 6, 7, and 8.

Sample Bivariate Rice Bivariate Weibull
Size (U1,σ1,U2,σ2,φ1−φ2+ψ,ρ) (a1,b1,a2,b2,ρ)

(m s−1, m s−1, m s−1, m s−1, –, –) (m s−1, –, m s−1, –, –)

500 hPa (39, 54.75◦ S) 1625 (19.8, 10.5, 17.9, 11.3, 3.14, 0.71) (25.6, 2.5, 24.5, 2.3, 0.0)
(12, 15.75◦ N) 1625 (0.0, 4.8, 6.9, 6.2, 0.88, 0.79) (6.8, 1.9, 11.0, 2.0, 0.62)
(3◦ S, 0.75◦ N) 1625 (3.8, 3.1, 5.5, 3.5, 0.0, 0.75) (5.8, 2.1, 7.6, 2.3, 0.85)
(15, 45◦ S) 1625 (1.1, 4.2, 26.9, 11.0, 0.0, 0.15) (6.0, 1.8, 32.7, 3.1, 0.23)

500 hPa 0.5-day lag 1625 (19.4, 10.8, 19.4, 10.5, 0, 0.80) (25.1, 2.2, 24.9, 2.3, 0.90)
1.5-day lag 1624 (19.4, 10.9, 19.7, 10.4, 0, 0.40) (25.5, 2.4, 25.4, 2.5, 0.62)
3-day lag 1623 (19,3, 10.9, 19.4, 10.4, 0, 0.23) (25.6, 2.5, 25.3, 2.6, 0.44)

Cabauw night 1189 (1.9, 1.9, 6.9, 3.7, 0.0, 0.85) (3.1, 1.7, 8.9, 2.3, 0.92)
night R1 763 (1.6, 1.2, 5.0, 4.0, 0.0, 0.83) (2.3, 2.2, 7.6, 2.1, 0.90)
night R2 427 (3.5, 2.0, 9.4, 3.0, 0.0, 0.90) (4.6, 2.2, 10.9, 3.6, 0.95)
day 1060 (3.2, 2.8, 3.6, 4.7, 0.12, 0.98) (5.0, 2.3, 7.3, 2.1, 0.99)

QuikSCAT (6.5◦ S, 162◦W) 321 (7.2,1.5,6.7,1.7,1.27,0.48) (8.0,5.4,7.6,4.8,0.35)
(6.5◦ S, 152◦W) 185 (7.3, 1.5, 7.0,1.7,1.15,0.95) (8.0,5.6,7.8,4.9,0.66)
(6.5◦ S, 142◦W) 208 (7.1,1.6,7.2,1.6,0.60,0.80) (7.9,5.1,8.0,5.0,0.83)

0 20 40
0

10

20

30

40

50

w
2
 (

m
s

-1
)

(39  S, 54.75  S)◦ ◦

(a)

(e)
p=0.00

(0.35)

0 20 40
0

10

20

30

40

50

w
2
 (

m
s

-1
)

(i)
p=0.30

(0.25)

0 20 40

w
1
 (ms -1)

0

10

20

30

40

50

w
2
 (

m
s

-1
)

0 10 20
0

10

20

30
(12  N, 15.75  N)◦ ◦

(b)

(f)
p=0.01

(0.24)

0 10 20
0

10

20

30

(j)
p=0.02

(0.17)

0 10 20

w
1
 (ms -1)

0

10

20

30

0 5 10 15
0

5

10

15

20
(3  S, 0.75  N)◦ ◦

(c)

(g)
p=0.55

(0.10)

0 5 10 15
0

5

10

15

20

(k)
p=0.82

(0.16)

0 5 10 15

w
1
 (ms -1)

0

5

10

15

20

0 10 20
0

20

40

60
(15  S, 45  S)◦ ◦

(d)

(h)
p=0.13

(0.28)

W
eibull

0 10 20
0

20

40

60

(l)
p=0.12

(0.27)

R
ice

0 10 20

w
1
 (ms -1)

0

20

40

60

Figure 5. Joint distributions of 500 hPa DJF 00Z wind speeds at four different pairs of latitudes along 216◦W. Wind speeds at the two latitudes
quoted in the column headings are respectively denoted w1 and w2. (a–d) Scatterplots of wind speed data. (e–h) Maximum likelihood
bivariate Weibull pdfs (white contours) and kernel density estimates of the observed joint pdf (colours). The p-value of a goodness-of-fit test
with the null hypothesis that the observed wind speed data are drawn from the corresponding best-fit bivariate Weibull distribution is given.
The values in brackets are the p-values obtained when the dependence structure is eliminated by shuffling the values of w2 in time. (i–l) As
in the middle row, for the best-fit bivariate Rice distribution. Values of the best-fit model parameters are given in Table 1.
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Figure 6. The temporal dependence structure of 500 hPa DJF 00Z wind speeds at (39◦ S, 216◦W) for lags s= 0.25 to 4 days, withw1 = w(tn)
and w2 = w(tn+s). (a–c) Scatterplots of wind speeds separated by 0.5 days (first column), 1.5 days (second column), and 3 days (third
column). (e–g) Maximum likelihood bivariate Weibull distribution (white contours) and kernel density estimate of the joint pdf of the lagged
data. The p-value of a goodness-of-fit test of the bivariate Weibull fit is quoted in white. The values in brackets are the p-values obtained
when the dependence structure is eliminated by shuffling the values of w2 in time. (i–k) As in panels (e–g) for the bivariate Rice distribution.
Panels (d, h, l) show results at a range of different time lags. (d) p-values of bivariate goodness-of-fit tests for bivariate Weibull (solid black)
and bivariate Rice (solid red). The dashed lines correspond to the p-values for shuffledw2. The thin black curve is the 0.95 significance level.
(h) Best-fit estimate of the parameter ρ of the bivariate Weibull distribution. (l) Best-fit estimates of ρ (black) and cosφ (blue) for the Rice
distribution. Values of the best-fit model parameters are given in Table 1.

July, August, and September (JAS), separated into daytime
(08:00–16:00 UTC) and nighttime (20:00–05:00 UTC) peri-
ods. These data were subsampled in time to account for serial
dependence. Only every 50th point was used in the follow-
ing analysis. A small number of zero wind speed values were
removed from the dataset.

Monahan et al. (2011, 2015) demonstrated the existence
of two distinct regimes of the nocturnal boundary layer in
these data, corresponding to the very and weakly stratified
boundary layers (vSBL and wSBL; e.g. Mahrt, 2014). These
regimes, denoted respectively R1 and R2, were separated
in Monahan et al. (2015) using a two-state HMM. Condi-
tioning the data on the HMM state, the scatterplot of wind
speeds at 10 and 200 m separates into two distinct popula-
tions (Fig. 7a–c). The scatter of wind speeds at these two
altitudes shows no evident regime structure during the day
(Fig. 7d). In all cases, the wind speeds at the two altitudes
are highly correlated.

Maximum likelihood estimates of the bivariate Weibull
and Rice distributions for the full nighttime data show ev-
ident disagreement between the scatter of the data and the
best-fit distributions (Fig. 7e, i). Goodness-of-fit tests for
both distributions were rejected (with p = 0 in both cases).
When conditioned on being in either regime R1 or R2, both
the bivariate Rice and Weibull distributions result in much
better representations of the nighttime data (Fig. 7f, g, j, k).
In all cases the p-values exceed 0.05, so the fits cannot be
rejected at the 95 % significance level. While neither the bi-
variate Rice nor Weibull distributions is a good probability
model for the full joint distribution of wind speeds at these
two altitudes, both are reasonable models for the distributions
conditioned by regime occupation. Finally, the fits of neither
the bivariate Rice nor Weibull distributions to the daytime
data are statistically significant at the 95 % significance level.
In particular, the joint Rice distribution is too broad (relative
to observations) for small values of w10 and w200 and neither
distribution is broad enough at higher wind speed values. p-
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Figure 7. Joint distribution of JAS wind speeds at 10 and 200 m measured at Cabauw, NL. (a–d) Wind speed scatterplots. (e–h) Kernel
density estimate of the joint pdf of wind speeds (colour) and maximum likelihood bivariate Weibull distribution (contours). The p-value
of a goodness-of-fit test of the bivariate Weibull distribution is quoted in white. The values in brackets are the p-values obtained when the
dependence structure is eliminated by shuffling the values of w200 in time. (i–l) As in the middle row, but for the best-fit bivariate Rice
distribution (contours). (a, e, i) All nighttime data (20:00–05:00 UTC). (b, f, j) Nighttime data conditioned on being in regime R2 (very
stable boundary layer). (c, g, k) Nighttime data conditioned on being in regime R1 (weakly stable boundary layer). (d, h, l) All daytime data
(08:00–16:00 UTC). Values of the best-fit model parameters are given in Table 1.

values of fits with w200 shuffled in time are all larger than
those of fits to the original data; only for the Rice fit to the
full nighttime data is the shuffled p-value below 0.05. As
seen in the previous data considered, there is no systematic
evidence that the failure of the joint Weibull or Rice distri-
butions to model the joint distributions of the Cabauw data
results from a failure to model the marginals.

3.3 Sea surface wind speeds

Twice-daily December, January, and February level 3.0
gridded SeaWinds scatterometer equivalent neutral 10 m
wind speeds between 60◦ S and 60◦ N at a resolution of
0.25◦× 0.25◦ from the National Aeronautics and Space
Administration (NASA) Quick Scatterometer (QuickSCAT;
Perry, 2001) are available from December 1999 through
February 2008. Data flagged as having possibly been cor-
rupted by rain were excluded from the following analysis.
Although the data are nominally twice-daily, it is often the
case that data for either the ascending or descending pass of
the satellite are missing. The maximum likelihood parameter
estimates of bivariate wind speed distributions and goodness-
of-fit tests were carried out using every third non-missing
data point in order to minimize the effect of serial depen-

dence. For the goodness-of-fit tests M = 10 quantiles were
used because of the relatively small sample sizes. Because
of the near-polar orbit of the satellite results, observations
of wind speed at different locations are not simultaneous.
The joint distributions we consider therefore combine depen-
dence in both space and time.

Joint distributions of wind speed at (6.5◦ S, 135◦W) with
speeds at points along a zonal transect to 165◦W (in incre-
ments of 1◦) were estimated. As the distance between the
two positions increases, there is a decreasing trend in the
best-fit bivariate Weibull dependence parameter ρ (Fig. 8h)
with some small fluctuations likely due to sampling vari-
ability. The same is not true for the best-fit bivariate Rice
dependence parameter ρ, which fluctuates wildly (Fig. 8l).
Large fluctuations also seen in the best-fit value of cosψ
are clearly correlated with those of ρ: where one parame-
ter is anomalously large (relative to the spatial trend), the
other is anomalously small. Of the 30 pairs of points con-
sidered, the null hypothesis of a bivariate Rice distribution is
rejected (at the 95 % significance level) at only one (Fig. 8d).
In contrast, p < 0.05 for the bivariate Weibull distribution
at several longitudes, particularly close to the base point at
(6.5◦ S, 135◦W). Inspection of the best-fit bivariate Weibull
pdfs (Fig. 8e–g) shows that they are broader for smaller wind
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Figure 8. Joint distribution of DJF QuikSCAT wind speeds at (6.5◦ S, 135◦W), denoted w1, and westward along a zonal transect to 165◦W
(denotedw2). (a–c) Scatterplots of wind speed at (6.5◦ S, 135◦W) and at the points (6.5◦ S, 162◦W), (6.5◦ S, 152◦W), and (6.5◦ S, 142◦W).
(e–g) Kernel density estimate of the joint pdf (colour) as well as the maximum likelihood bivariate Weibull distribution (white contours). The
p-value of a goodness-of-fit test of the bivariate Weibull distribution is quoted in white. The values in brackets are the p-values obtained when
the dependence structure is eliminated by shuffling the values of w2 in time. (i–k) As in panels (e–g) but for the bivariate Rice distribution.
(d) p-values of the bivariate goodness-of-fit tests for the wind speeds along the transect, for the bivariate Weibull distribution (solid black)
and for the bivariate Rice distribution (solid red). The dashed lines correspond to the p-values for shuffled w2. (h) Estimate of the parameter
ρ from the best-fit bivariate Weibull distribution along the transect. (l) Estimate of the parameters ρ (black) and cosψ (blue) from the best-fit
bivariate Rice distribution along the transect. Values of the best-fit model parameters are given in Table 1.

speeds than for larger values, a feature not evident in the best-
fit bivariate Rice distributions (Fig. 8i–k) or the scatter of
data (Fig. 8a–c). From these results, we find only equivocal
evidence that the pairs of wind speed data along this zonal
transect are drawn from a bivariate Weibull distribution and
no strong evidence to reject the null hypothesis that they are
drawn from a bivariate Rice distribution. Again, the p-values
of fits to temporally shuffled wind speeds are generally sim-
ilar to or larger than those of fits to the full distribution. The
bivariate Rice distribution with the wind speed at 142◦W
(Fig. 8k) illustrates a rare example in which the parametric
fit to the original data passed the goodness-of-fit test at the
5 % significance level while the fit to the shuffled data did
not; it is evident from Fig. 8d that this situation is not com-
mon. The surface wind vector components in the tropics are
known to be non-Gaussian (e.g. Monahan, 2007), so we have
a priori reasons to believe the joint distribution should not be
Ricean. The fact that the data do not generally allow for a

rejection of the null hypothesis that the winds are bivariate
Rice (for either the original or shuffled datasets) is likely a
consequence of the relatively small sample size.

The large variations in best-fit estimates of ρ and cosψ
for the bivariate Rice distribution result from the fact
that for some parameter values the distribution is only
weakly sensitive to simultaneous changes in these pa-
rameters: increases in ρ can be offset by decreases in
cosψ with only small changes to the joint distribution. To
demonstrate this weak sensitivity, 50 realizations of bivari-
ate Ricean variables with (U1,σ1,U2,σ2,ρ,φ1−φ2+ψ)=

(7.3,1.5,6.9,1.5,0.5,0) were generated for each of the sam-
ple sizes of N = 250, 1500, and 9000. Maximum likeli-
hood estimates of these parameters obtained from these re-
alizations demonstrate that for the smaller samples ρ and
cosψ show strong and correlated sampling variability, with
large increases in ρ combined with large decreases in cosψ
(Fig. 9a). As expected, these sampling fluctuations become
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Figure 9. (a–c) Estimates of ρ and cosψ from 50 realizations of bivariate Ricean variables with (U1,σ1,U2,σ2,ρ,φ1−φ2+ψ)=
(7.3,1.5,6.9,1.5,0.4,0) for each of the sample sizes N = 250,1250, and 9000. The open circles correspond to estimates with cos(φ1−
φ2+ψ)≥ 0.99, while the stars are estimates with cos(φ1−φ2+ψ) < 0.99. (d–f) Contours of bivariate Rice pdfs corresponding to 10 of the
50 best-fit parameter estimates (randomly chosen). The contour values are the same for all pdfs within each subplot. (g–i) Scatterplot of the
sample correlation coefficient between the two Ricean variables and the correlation coefficient given by the approximate expression Eq. (40).
The 1 : 1 line is given in solid black. The open circles and stars are as in the upper row.

smaller as the sample size increases(Fig. 9b, c). Despite the
large variation of ρ and cosψ for small to intermediate sam-
ple sizes, there is relatively little variation in the structure of
the corresponding bivariate Rice distributions (Fig. 9d–f).

An indication of why increases in ρ should counterbalance
decreases in cosψ with only small effects on the joint distri-
bution is given by the approximate expression for the corre-
lation coefficient, Eq. (40). The value of this approximation
is unaffected by changes in ρ and ψ that leave the numera-
tor invariant. The compensation between sampling variations
in ρ and cosψ is evident the fact that corr(w1,w2) given by
Eq. (40) is an excellent approximation to the sample corre-
lation coefficient even for estimates of ρ and cosφ which
are far away from the population values (Fig. 9g–i). Note
that there is no evident relationship between sampling fluc-
tuations in corr(w1,w2) and those of ρ and ψ : the range of
sample correlation values for (ρ,cosψ) near the population
values of (0.5,1) (open circles) is the same as that for values
of (ρ,cosψ) far from these values (stars). In these parameter
ranges, the dependence between w1 and w2 constrains ρ and

ψ not individually, but together – over large ranges of values
for sufficiently small sample sizes.

4 Conclusions

This study has considered two idealized probability mod-
els for the joint distribution of wind speeds, both derived
from models for the joint distribution of the horizontal wind
components. The first, the bivariate Rice distribution, follows
from assuming that the wind vector components are bivari-
ate Gaussian with an idealized covariance structure. The sec-
ond, the bivariate Weibull distribution, arises from nonlinear
transformations of variables with a bivariate Rice distribution
in the limit that the mean vector winds vanish (the bivariate
Rayleigh distribution). While the bivariate Rice distribution
has the advantage of being more flexible and naturally re-
lated to a simplified model for the joint distribution of the
wind components, the bivariate Weibull distribution is math-
ematically much simpler and easier to work with. Through
consideration of a range of joint distributions of observed
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wind speeds (over land and over the ocean; at the surface
and aloft; in space and in time) the bivariate Rice distribu-
tion was shown to generally model the observations better
than the bivariate Weibull distribution. However, in many cir-
cumstances the differences between the two distributions are
small and the convenience of the bivariate Weibull distribu-
tion relative to the bivariate Rice distribution is a factor which
may motivate its use.

The fact that the bivariate Rice distribution is easier to
work with, but less flexible, than the bivariate Weibull dis-
tribution is evident from inspection of their analytic forms
and the relative number of parameters to fit (five vs. six). If
the bivariate Weibull distribution was generically appropri-
ate for modelling the bivariate wind speed distribution, there
would be no need to consider more complicated models such
as the bivariate Rice. This study provides an empirical as-
sessment of the relative practical utility of the two models,
trading off the ability to model more general dependence
structures (e.g. negatively correlated speeds) against model
simplicity. Neither the univariate nor the bivariate Weibull or
Rice distributions are expected to represent the true distribu-
tions of wind speeds (e.g. Carta et al., 2009). The results of
this analysis characterize the practical utility of these models,
rather than making a claim to their “truth”. It is noteworthy
that for the data considered in this study, the failure of either
the bivariate Rice or Weibull distributions to adequately fit
the joint distribution of wind speeds (at a significance level
of 5 %) is not generally associated with a corresponding fail-
ure of the parametric distribution to model the marginals. An
interesting direction of future study would be consideration
of other parametric models for the joint distribution of non-
negative quantities, such as the α-µ distribution (Yacoub,
2007), copula-based models (e.g. Schlözel and Friederichs,
2008), or distributions obtained through nonlinear transfor-
mations of multivariate Gaussians (e.g. Brown et al., 1984).

Many of the assumptions that have been made regarding
the distribution of the wind components are known not to
hold in various settings. For example, the vector wind com-
ponents are generally not Gaussian, either aloft or at the sur-
face (e.g. Monahan, 2007; Luxford and Woollings, 2012;
Perron and Sura, 2013), and fluctuations will not generally
be isotropic (especially over land; cf. Mao and Monahan,
2017). Furthermore, when used to model temporal depen-
dence the assumed correlation structure cannot account for
the anisotropy in autocorrelation of orthogonal components
in either space (e.g. Buell, 1960) or time (e.g. Monahan,
2012b). Relaxing the assumptions regarding isotropy of cor-
relation structure results in expressions for the joint speed
distributions involving integrals over angle which are not an-
alytically tractable.

While it is possible to relax the assumption of Gaussian
components for univariate speed distribution (e.g. Monahan,
2007; Drobinski et al., 2015), extending this analysis to the
bivariate case would involve specifying a non-Gaussian de-
pendence structure for the components. At present, there is
no physically based model for such dependence. Without any
such physical justification, the only option is an empirical in-
vestigation of the ability of different copula models to repre-
sent observed joint wind speed distributions. It is unlikely
that a copula-based model for dependence of components
will admit analytically tractable expressions for joint speed
distributions. A copula-based analysis of either the compo-
nents or the speeds directly is also likely necessary for mod-
elling extreme wind speeds (either large percentiles, peaks
over threshold, or block maxima), as the tails of the bivariate
Rice and Weibull distributions may not be adequate for this
task. Finally, extending the approach used in this study to ob-
tain explicit closed-form results for the bivariate wind speed
distribution to a higher-dimensional multivariate setting – of
wind speeds alone, or of a mixture of wind speeds and other
meteorological quantities – will be analytically intractable
for any except the simplest (and likely unrealistic) covari-
ance structures. It may not be practical to extend the program
of obtaining closed-form expressions for joint speed distri-
butions from models of the component distributions much
further beyond the bivariate Rice and Weibull speed distribu-
tions considered in this study.

Ultimately, it would be best for models of the joint distri-
bution of wind speeds to arise from physically based (if still
idealized) models, as has been done for the univariate case
in Monahan (2006) and Monahan et al. (2011). The devel-
opment of such models represents an interesting direction of
future study.

Data availability. The ERA-Interim 500 hPa zonal and merid-
ional wind components were obtained from the European Centre
for Medium-Range Weather Forecasts at http://www.ecmwf.int/en/
research/climate-reanalysis/era-interim (last access: 17 November
2015). The Cabauw tower data were downloaded from the Cabauw
Experimental Site for Atmospheric Research (CESAR) at http:
//www.cesar-database.nl/ (last access: 13 June 2014). The Level 3.0
QuickSCAT data were downloaded from the NASA Jet Propul-
sion Laboratory Physical Oceanography Distributed Active Archive
Center (http://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_3_V2,
last access: 18 February 2010).
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Appendix A: Numerical computation of bivariate Rice
pdf

Equation (25) is difficult to evaluate numerically when the
arguments of the Bessel functions become large. We have
found that a computationally more stable result is obtained
when this equation is expressed in the form

p(w1,w2)=
w1w2

2πσ 2
1 σ

2
2 (1− ρ

2)

2π∫
0

expf (w1,w2,λ) dλ, (A1)

where

f (w1,w2,φ)=−
1

2(1− ρ2)[
w2

1 +U
2
1

σ 2
1
+
w2

2 +U
2
2

σ 2
2
−

2ρU1U2 cos(φ1−φ2+ψ)

σ1σ2

]
+ lnI0

(√
A2+B2+ 2AB cosλ

)
+C cosν cosλ+ lncosh(C sinν sinλ) dλ, (A2)

with

A=
w1

√
a2

1 + b
2
1

σ1
, (A3)

B =
w2

√
a2

2 + b
2
2

σ2
, (A4)

C =
ρ

1− ρ2
w1w2

σ1σ2
, (A5)

and the integral is evaluated numerically. Equation (A1) is
obtained from Eq. (26) using the fact that

Ik(x)Ik(y)=
1

2π

2π∫
0

I0(

√
x2+ y2+ 2xy cosφ)coskφ dφ (A6)

(which follows from Eq. 33) and use of Eq. (24). Whenwi/σi
becomes large, numerical evaluations of the Bessel function
in Eq. (A1) become unreliable. For the present computations
using Matlab, values of Inf occur in such cases. This problem
was not solved by using the approximation Eq. (10) when the
argument of the Bessel function is large, as this approxima-
tion is not sufficiently accurate.

Appendix B: Bivariate goodness-of-fit test

Goodness-of-fit of the bivariate distributions considered was
assessed as follows. For the speed dataset wj,n, j = 1,2
and n= 1, . . .,N , evenly spaced quantiles qj,i = i/M , i =
0, . . .,M for the marginals are estimated. The quantiles
qj,0 = 0 and qj,M = 1 are estimated respectively as 0.9 times
the smallest observed value and 1.1 times the largest ob-
served value. The number of pairs of observations falling si-
multaneously into all pairs of quantiles are computed:

fkl = (B1)
N∑
n=1

1
[(
w1,n ∈ (q1,k,q1,(k+1)]

)
∩
(
w2,n ∈ (q2,l,q2,(l+1)]

)]
,

where 1(·) is the indicator function. The pdf with maximum
likelihood parameters θ is then integrated to obtain the ex-
pected number of observations in these intervals

gkl =N

q1,(k+1)∫
q1,k

q2,(l+1)∫
q2,l

p(w1,w2;θ) dw1dw2 (B2)

and the test statistic A is computed:

A=
1
M2

M∑
k,l=1
|fkl − gkl |. (B3)

Any elements gkl which take the value of Inf (because of nu-
merical difficulties in evaluating the Bessel function for large
arguments; cf. Appendix A) are excluded from the calcula-
tion of the test statistic A.

After computation of A from the observations, an ensem-
ble of B random realizations of length N from p(w1,w2;θ)

is generated and the corresponding Ãk , k = 1, . . .,B values of
the test statistic are generated in the manner described above.
The p-value of the null hypothesis that the observations are
drawn from the specified distribution is finally computed
as the fraction of Ãk values falling above A. Throughout
this analysis, we use M = 20 and B = 250 (unless otherwise
noted). This goodness-of-fit test assumes independence of
the random draws (w1n,w2n), (w1m,w2m), m 6= n. To min-
imize the effect of serial dependence in data, in this study we
subsample the datasets considered with a sampling interval
sufficiently large to balance reducing serial dependence with
maintaining sample size.

A second goodness-of-fit test proposed by McAssey
(2013) was also considered, but the statistical power was
found to be lower than the test described above for the distri-
butions considered in this study.
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