Articles | Volume 24, issue 1
Nonlin. Processes Geophys., 24, 9–22, 2017
Nonlin. Processes Geophys., 24, 9–22, 2017

Research article 16 Jan 2017

Research article | 16 Jan 2017

Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

Zhe An et al.

Related authors

Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures
Adrian S. Wong, Kangbo Hao, Zheng Fang, and Henry D. I. Abarbanel
Nonlin. Processes Geophys. Discuss.,,, 2019
Preprint withdrawn
Short summary
Improved variational methods in statistical data assimilation
J. Ye, N. Kadakia, P. J. Rozdeba, H. D. I. Abarbanel, and J. C. Quinn
Nonlin. Processes Geophys., 22, 205–213,,, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41,,, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22,,, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500,,, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487,,, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss.,,, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Abarbanel, H. D. I.: Analysis of Observed Chaotic Data, Springer, New York, 1996.
Abarbanel, H. D. I.: Predicting the Future: Completing Models of Observed Complex Systems, Springer-Verlag, New York, 2013.
Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk, M.: Dynamical State and Parameter Estimation, SIAM J. Appl. Dyn. Syst., 8, 1341–1381, 2009.
Aeyels, D.: Generic observability of differentiable systems, SIAM J. Control Optim., 19, 595–603, 1981a.
Aeyels, D.: On the number of samples necessary to achieve observability, Syst. Control Lett., 1, 92–94, 1981b.