Articles | Volume 24, issue 1
https://doi.org/10.5194/npg-24-9-2017
https://doi.org/10.5194/npg-24-9-2017
Research article
 | 
16 Jan 2017
Research article |  | 16 Jan 2017

Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

Zhe An, Daniel Rey, Jingxin Ye, and Henry D. I. Abarbanel

Related authors

Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures
Adrian S. Wong, Kangbo Hao, Zheng Fang, and Henry D. I. Abarbanel
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-1,https://doi.org/10.5194/npg-2019-1, 2019
Preprint withdrawn
Short summary
Improved variational methods in statistical data assimilation
J. Ye, N. Kadakia, P. J. Rozdeba, H. D. I. Abarbanel, and J. C. Quinn
Nonlin. Processes Geophys., 22, 205–213, https://doi.org/10.5194/npg-22-205-2015,https://doi.org/10.5194/npg-22-205-2015, 2015
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I.: Analysis of Observed Chaotic Data, Springer, New York, 1996.
Abarbanel, H. D. I.: Predicting the Future: Completing Models of Observed Complex Systems, Springer-Verlag, New York, 2013.
Abarbanel, H. D. I., Creveling, D. R., Farsian, R., and Kostuk, M.: Dynamical State and Parameter Estimation, SIAM J. Appl. Dyn. Syst., 8, 1341–1381, 2009.
Aeyels, D.: Generic observability of differentiable systems, SIAM J. Control Optim., 19, 595–603, 1981a.
Aeyels, D.: On the number of samples necessary to achieve observability, Syst. Control Lett., 1, 92–94, 1981b.