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Abstract. The problem of forecasting the behavior of a com-
plex dynamical system through analysis of observational
time-series data becomes difficult when the system expresses
chaotic behavior and the measurements are sparse, in both
space and/or time. Despite the fact that this situation is quite
typical across many fields, including numerical weather pre-
diction, the issue of whether the available observations are
“sufficient” for generating successful forecasts is still not
well understood. An analysis by Whartenby et al. (2013)
found that in the context of the nonlinear shallow water equa-
tions on a β plane, standard nudging techniques require ob-
serving approximately 70 % of the full set of state variables.
Here we examine the same system using a method introduced
by Rey et al. (2014a), which generalizes standard nudging
methods to utilize time delayed measurements. We show that
in certain circumstances, it provides a sizable reduction in
the number of observations required to construct accurate es-
timates and high-quality predictions. In particular, we find
that this estimate of 70 % can be reduced to about 33 % using
time delays, and even further if Lagrangian drifter locations
are also used as measurements.

1 Introduction

The ability to forecast the complex behavior of global circu-
lation in the coupled earth system lies at the core of mod-
ern numerical weather prediction (NWP) efforts. Success-
fully predicting such behavior requires both a good model

of the underlying physical processes as well as an accurate
estimate of the state of the model at the end of the analysis or
observation window. When the model is chaotic, even if it is
known precisely, the accuracy of the prediction depends on
the accuracy of the initial state estimate. This is due to sen-
sitive dependence on the initial conditions, which was first
identified by Lorenz (1963).

Here we consider an idealized situation where a perfect
dynamical model describes the deterministic time evolution
of a set ofD state variables. We assume that Lmeasurements
are made at uniform time intervals 1t within an observation
window of length T , so the total number of distinct mea-
surements is L× (T /1t + 1). Our main concern here is the
case where the measurements are sparse in state space, so
(L�D).

This situation of high-dimensional dynamics and sparse
measurements is typical in the process of examining the con-
sistency of observed data and quantitative models of com-
plex nonlinear systems: from functional nervous systems
to genetic transcription dynamics, among many other ex-
amples (Abarbanel, 2013). Although the methods described
here have broad applicability across the quantitative study of
the underlying physical or biological properties appearing in
many complex systems, our discussion will focus solely on a
specific geophysical system: the shallow water equations. As
discussed by Cardinali (2013), operational NWP models at
the European Centre for Medium-Range Weather Forecast-
ing (ECMWF, 2013) now contain upwards of 108 degrees of
freedom. These models are analyzed using 3–4×107 daily
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10 Z. An et al.: Estimating the state of a geophysical system with sparse observations

observations, a large portion of which are often discarded.
Given the scale of these calculations, the question of whether
the remaining observations are in fact “sufficient” for pro-
ducing accurate analyses and forecasts is of considerable im-
portance.

To clarify these ideas we refer to the observability study
given by Whartenby et al. (2013), which evaluated the per-
formance of familiar nudging methods on chaotic, shallow
water flow. The flow was simulated on a β plane defined by a
square grid with uniform spacing N1 and periodic boundary
conditions, and driven by Ekman pumping. Poor predictions
were obtained unless the height variable h and at least one
of the two velocity variables u, v at each of the N1×N1
grid points were measured. In other words, accurate forecasts
required direct observation of roughly 70 % of the 3N2

1 dy-
namical variables.

This lower bound was termed the critical number of mea-
surements Ls required to synchronize the model with the
data. Synchronization occurs when the error between the
model state estimate and the data drops below a prescribed
threshold, which is typically below the magnitude of the ob-
servation noise. It depends on a number of factors, includ-
ing the type of observation network, the signal to noise ratio,
properties of the model such as the number and magnitude of
its Lyapunov exponents, as well as the choice of algorithm.
Strong constraint 4DVar for instance, which is now standard
practice in data assimilation (Rabier et al., 2000), encoun-
ters serious difficulty when the length of the window is long
relative to the timescale of the chaos (Pires et al., 1996). In
this case, the algorithm will not produce adequate forecasts
even with full observations L=D. Despite this, however,
the lowest estimates of Ls appear remarkably consistent be-
tween nudging methods and fixed interval formulations of
4DVar with both strong and weak constraints (Abarbanel et
al., 2009; Abarbanel, 2013; Quinn and Abarbanel, 2010).

Here we examine what can be done when L < Ls. Specifi-
cally, we will show that, using the method introduced by Rey
et al. (2014a, b), which modifies a standard nudging tech-
nique to include additional information in the time delays of
the observations, the estimate of 70 % given by Whartenby et
al. (2013) can be reduced to roughly 33 %, and can be even
further reduced if positional observations from Lagrangian
drifters are also used. These outcomes suggest that time de-
lays may be useful for reducing the number of required ob-
servations to meet the practical constraints of operational
NWP. However, further testing with more realistic models,
observations, and noise is required to verify this claim.

2 Time delayed nudging

We now briefly discuss the concept of time delayed nudg-
ing; further details can be found in Rey et al. (2014a, b). The
system is assumed to be described by a mathematical model
whose state is given by a D-dimensional vector x(t). The

model defines a dynamical rule for evolving the x(t) in time,
which we assume can be represented as a set of ordinary dif-
ferential equations (ODEs)

dx(t)
dt
= F (x(t), t). (1)

If the dynamics of the system are given by partial differential
equations (PDEs), such as with fluids in an earth systems
model, these ODEs may be realized by discretizing the PDEs
on a grid. It is worth noting however that a non-trivial amount
of discretization error is introduced in this process.

Measurements of the physical system are recorded dur-
ing an observation window 0≤ t ≤ T =N1t , where L ob-
servations y(tn) are taken at each time tn = n1t for n=
0,1, . . .,N . The measurements y(t) are related to the state
vector x(t) through a measurement operator h(t). For sim-
plicity, it is taken here to be a constant, L×D projection
matrix h(t)=H , so that y(t)=H · x(t)+ noise. The to-
tal number of measurements in the observation window is
L× (N + 1).

The overall objective is to estimate the full model state
x(T ) at the end of the assimilation window using informa-
tion from observations, and then use this estimate to predict
the system’s subsequent behavior for t > T using Eq. (1).
The accuracy of these predictions, when compared with addi-
tional measured data in the prediction window t > T , serves
as a metric to validate both the model and the assimilation
method, through which the unobserved states of the system
are determined. This establishes a necessary condition on L
that is required to synchronize the model output with the
data and thereby obtain accurate estimates for the unobserved
states of the system.

When the model is known precisely, a familiar strategy for
transferring information from the measurements to the model
involves the addition of a coupling or control or nudging term
to Eq. (1),

dx(t)
dt
= F (x(t), t)+H †

·G(t) ·
(
y(t)−H · x(t)

)
. (2)

whereH † denotes the transpose, andG(t) is an L×Lmatrix
that is nonzero only at times tn where measurements occur.
For simplicity, when G(t) is non-zero, it is assumed to be
constant and diagonal, so the coupling terms only affect the
measured states.

This long-standing procedure, known as “nudging” in the
geophysics and meteorology literature, has been shown to
fail when the number of measurements at a given time falls
below a critical value Ls (Abarbanel et al., 2009). This can
be understood by noting that the coupling term perturbs the
observed model states, driving them towards the data. With
enough observations L, and a sufficiently strong coupling
G(t), this control term alters the Jacobian of the dynami-
cal system Eq. (2) so that all its (conditional) Lyapunov ex-
ponents are negative (Pecora and Carroll, 1990; Abarbanel,
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1996; Kantz and Schreiber, 2004). That is, the log of the
maximum eigenvalue of the matrix [8(T , t0)† ·8(T , t0)]1/2T

is negative, where 8(t, t ′)= ∂x(t)/∂x(t ′) is the linearized
state transition matrix or tangent linear model. Its time evo-
lution is described by the variational equation

d8(t, t ′)
dt

=DF̃ (x(t), t) ·8(t, t ′) 8a b(t, t
′)= δa b, (3)

along the trajectory given by Eq. (2) and

DF̃ =DF (x(t), t)−H †
·G(t) ·H

is its Jacobian. That is,DFa b(x(t), t)= ∂Fa(x(t), t)/∂xb(t)
and δa b is the Kronecker delta, so 8(t ′, t ′) is an identity ma-
trix. This establishes a necessary condition on L required to
synchronize the model with the data. Numerical experiments
have shown that when this condition is not met, estimates are
not accurate and predictions are unreliable (Abarbanel et al.,
2009; Abarbanel, 2013). An example of this will be given
later in our discussion of geophysical shallow water flow.

It is therefore important to understand, for a given prob-
lem, whether L > Ls. If this condition is not satisfied and
additional measurements cannot be made, then we must find
another means to overcome this deficit in L. One way to
proceed involves the recognition that additional information
resides in the temporal derivatives of the observations. In
practice, however, this derivative information cannot be mea-
sured directly, although it can be approximated via finite
differences, for instance by approximating dy(tn)/dt with
(y(tn+ τ)− y(tn))/τ where τ is some multiple of the time
differences between measurements. The drawback here is
that the derivative operation acts as a high-pass filter, and
is thus quite susceptible to noise in the measurements. Al-
ternatively, it has been known for some time in the nonlin-
ear dynamics literature that this additional information in the
derivative is also available in the time delay of the measure-
ments, y(tn+τ). This process can be repeated as many times
as needed to form a DM-dimensional vector of time delays,
which we call S(t).

This idea provides the basis for the well-established tech-
nique in the analysis of nonlinear dynamical systems, where
this structure is employed as a means of reconstructing un-
ambiguous orbits of a partially observable system (see, e.g.,
Aeyels, 1981a, b; Mañé, 1981; Sauer et al., 1991; Takens,
1981; Kantz and Schreiber, 2004; Abarbanel, 1996). By
mapping to a proxy space of time delayed observations, one
is able to invert the projection associated with measuring
L <D components of the underlying dynamics, by using the
fact that new information beyond y(tn) lies in y(tn+ τ). The
derivative operation is just another (albeit less numerically
robust) way of accessing this information.

Note that the time delay τ and the embedding dimension
DM are parameters that need to be chosen appropriately for
the system, although a number of useful heuristics are avail-
able (Abarbanel, 1996). Moreover, Takens (1981) proved that

taking DM > 2DA, where DA is the fractal dimension of
the attractor, is sufficient to unambiguously reconstruct the
topology of the attractor. It is worth noting however that this
condition is only sufficient, and the procedure often succeeds
with a considerably smaller value of DM.

In the estimation context, the time delays are used in a
slightly different way. Instead of reconstructing the topol-
ogy of the attractor, they are used to control local instabil-
ities in the dynamics, which cause errors in the analysis to
grow. In other words, DM does not need to embed the entire
space. Rather, it only needs to be large enough to effectively
increase the amount of information transferred from the L
measurements to a value above the critical threshold, Ls.

Using this idea Rey et al. (2014a, b) proposed a technique
to extract additional information from time delayed observa-
tions by constructing an extended state space S(t), created
from an L ·DM dimensional vector of the measurements and
its time delays. The components of this time delayed obser-
vation vector are denoted by

Y † (tn )=
{
y† (tn ),y

† (tn + τ), . . .,y
† (tn + τ (Dm − 1))

}
, (4)

whereDM is the dimension of the time delayed vector Y (tn),
and τ is the delay, which here is assumed to be a positive
integer multiple of 1t . Also, note that the term “delay” here
is not used in its usual sense. Rather, this method involves a
time advanced formulation, which for positive τ incorporates
observations at later times. Both formulations are acceptable
however.

The corresponding time delay model vectors S(x(t)) are
given by

S†(x(t))=
{

[H · x(t)]†, [H · x(t + τ)]†, . . .,

[H · x(t + τ (Dm− 1))]†
}
, (5)

where the values x(t ′ > t) are constructed by integrating the
uncoupled dynamics, Eq. (1), forward in time. The time evo-
lution for S(x(t)) is given by the chain rule,

dS(x(t))
dt

=DS(x(t)) ·F (x(t), t), (6)

where the Jacobian DS(x(t))= ∂S(x(t))/∂x(t) with re-
spect to x(t) can be computed using the variational Eq. (3),
by substituting the Jacobian of the uncoupled model DF̃ →
DF . Furthermore, in analogy with Eq. (2), we introduce a
control term g(t) in time delay space:

dS(x(t))
dt

=DS(x(t)) ·F (x(t), t)+g(t) ·
(
Y (t)−S(x(t))

)
. (7)

We then transform back to physical space, by multiplying
both sides of this equation by [DS(x(t))]−1, to get

dx(t)
dt
= F (x(t), t)+G(t) ·

[
DS(x(t))

]−1

·g(t) ·
(
Y (t)−S(x(t))

)
. (8)
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Note that there are now two control terms, G(t) and g(t),
which act in physical and time delay space, respectively.
Also, sinceDS(x(t)) is a (L ·Dm)×D matrix, it is generally
not square, so its pseudoinverse [DS(x(t))]+ is used.

At each step of the integration of the controlled (nudged)
dynamical Eq. (8), the control term perturbs the full state vec-
tor in time delay space S(x(t)) toward the time delay mea-
surement vector Y (t), allowing it to extract additional infor-
mation from the waveform of the existing measurements. The
value of this statement will become clearer later on.

Furthermore, in the limit DM = 1 the time delay formula-
tion Eq. (8) reduces to the standard nudging control Eq. (2).
Two important differences however are realized when DM >

1. First, information from the time delays of the observa-
tions is presented to the physical model equations. And sec-
ond, all components of the model state x(t) are influenced
by the control term, not just the observed components. This,
for example, allows fixed parameters p of the model to be
estimated as a natural result of the synchronization process
by including them as additional state variables, satisfying
dp(t)/dt = 0.

Time delay nudging shares considerable overlap with in-
cremental formulations of strong constraint 4DVar (Lewis
and Derber, 1985; Talagrand and Courtier, 1987; Courtier
et al., 1994). For instance, both methods use a sliding win-
dow of observations and compute the control (nudging) per-
turbation by minimizing the squared magnitude of time-
distributed innovations |Y (t)−S(x(t))|2. The use of time ad-
vanced observations is also standard practice in strong con-
straint 4DVar, and is motivated by the fact that the neces-
sary conditions for synchronization require one to control the
propagation of errors on the unstable manifold (Trevisan et
al., 2010; Palatella et al., 2013). Since these errors are locally
described by Eq. (3) as the system evolves forward in time,
the time advanced construction is a natural choice.

The main differences between the two methods are as fol-
lows.

1. Strong constraint 4DVar does not include the notion of
a time delay or embedding dimension.

2. With the time delay method, the analysis is propagated
in small increments dt between analyses, and observa-
tions are re-used.

3. Time delay nudging uses truncated singular-value de-
composition to regularize the solution, while strong
constraint 4DVar uses a background term to perform
Tikhonov regularization.

Regarding the second point, near the end of the observation
window one must either switch to a time delayed formulation
or reduceDM appropriately. Here however for simplicity, the
end of the observation window is taken so that the last obser-
vation y(T +τ (DM−1)) is always available. Also, the third
point prevents time delay nudging from being applied to sys-

tems of the size used in operational NWP. However, a sim-
plified variation of time delay nudging was recently given
by Pazo et al. (2016). This method avoids the variational
Eq. (3) and the generalized inverse altogether, and thus re-
quires considerably less computational effort than either time
delay nudging or strong constraint 4DVar. It is worth inves-
tigating whether this method is also capable of achieving the
same reduction in Ls, shown here for geophysical flows.

Furthermore, while we are currently working on unifying
the motivating ideas behind time delay nudging with the vari-
ational action principle of weak constraint 4DVar, these and
other related connections to 4DVar will be given in a subse-
quent paper. For the moment however, no additional theory
will be introduced. Instead, we focus on its application to a
core geophysical model: the shallow water equations.

3 Twin experiments

We test our time delay nudging procedure through a series
of twin experiments (Durand et al., 2002; Blum et al., 2009;
Blum, 2010). After solving the original dynamical Eq. (1)
forward from preselected initial conditions x(0), the obser-
vation process is simulated by applying the observation op-
erator H to project the state down to the L observed com-
ponents. Gaussian noise N(0,σ ) is then added to each com-
ponent to simulate observation error. The estimation process
continues as described above until the time t = T . At this
point, the coupling terms g(t) and G(t) are set to zero and
the uncoupled dynamics Eq. (1) are integrated forward from
the estimated x(T ) to construct a forecast for t > T . Com-
paring this forecast against additional observations y(t > T )
then tests whether the unobserved states are also accurately
estimated.

To simulate the conditions of a true experiment we mon-
itor our progress by calculating the observable synchroniza-
tion error, namely the root mean square deviation between
the data and the observed model states:

SE(tn)=

√
1
L

∣∣H · xs(tn)− y
s(tn)

∣∣2. (9)

In this expression, scaled variables have been introduced
such that xs

`(t)=
[
x`(t)− x

min
` (t)

]
/
[
xmax
` (t)− xmin

` (t)
]

and
xmin/max
` (t) are the minimum or maximum values of x`(t)

over the entire assimilation window. The same definition
holds for ys

`(t). This rescales all data and observed model
states to lie in the interval [0,1], so that each state compo-
nent’s contribution to the synchronization error is roughly
equal. While this could make the result sensitive to outliers
in the data, it did not appear to be an issue here.

It was previously shown by Whartenby et al. (2013) that
when the synchronization error Eq. (9) decreases to very
small values, the full state x(T ) is accurately estimated and
the forecast is quite good. Conversely, when this fails to oc-
cur, the full state x(T ) is not well estimated and the predic-
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tion is unreliable. In Rey et al. (2014a, b), this contraction of
the synchronization error was only observed when the num-
ber of time delayed observations L×DM, and the magnitude
of the coupling matrices g(t), G(t) were “large enough”.
The precise meaning of this statement will become apparent
shortly.

4 Nonlinear shallow water equations

We now describe the application of time delay nudging to
a nonlinear model of shallow water flow on a mid-latitude
β plane. This geophysical fluid dynamical model was pre-
viously examined by Pedlosky (1987) and Whartenby et al.
(2013) as well as many others, and is at the core of earth sys-
tem flows used in NWP. Of course, operational models con-
tain considerably more detail than this example, and those
models also describe the dynamics over a sphere. While we
suspect the results presented here for this simplified model
will be applicable to more realistic models as well, additional
experiments are needed to validate this claim.

As the depth of the coupled atmosphere ocean fluid
layer (10–15 km) is markedly less than the earth’s radius
(6400 km), the shallow water equations for two-dimensional
flow provide a good approximation to the fluid dynamics of
the ocean. Three fields on a mid-latitude plane describe the
fluid flow {u(r, t),v(r, t),h(r, t)}: the north–south velocity
v(r, t), the east–west velocity u(r, t), and the height of the
fluid h(r, t), with r = {x,y}. The fluid is taken as a single,
constant density layer and is driven by wind stress τ(r, t) at
the surface z= h(r, t) through an Ekman layer. These physi-
cal processes satisfy the following dynamical equations with
u(r, t)= {u(r, t),v(r, t)},

∂u(r, t)

∂t
=−u(r, t) · ∇u(r, t)− g∇h(r, t)+u(r, t)

× (f (y) ẑ)+A∇2u(r, t)− ε u(r, t),

∂h(r, t)

∂t
=−∇ ·

[
h(r, t)u(r, t)

]
− ẑ · curl

[
τ(r, t)

f (y)

]
. (10)

The Coriolis force is linearized about the Equator f (y)=
f0+βy and the wind-stress profile is selected to be τ(r, t)=
{[F/ρ] cos(2π y),0}. The parameterA represents the viscos-
ity in the shallow water layer, ε is Rayleigh friction and ẑ is
the unit vector in the z direction. The values we have used
for the model parameters are given in Table 1. With these
fixed parameters the shallow water flow is chaotic, and the
largest Lyapunov exponent for this flow is estimated to be
λmax = 0.0325/h≈ 1/31 h by measuring the average growth
rate of random perturbations. The details of this calculation
are given by Whartenby et al. (2013).

We have analyzed this flow using the enstrophy conserv-
ing discretization scheme given by Sadourny (1975) on a
grid of size N2

1 for increasing resolution N1 = {16,32,64}.
The total domain size is constant 800× 800 km and pe-

riodic boundary conditions are enforced. Using the twin-
experiment framework, with simple nudging given in Eq. (2)
and a static, uniform observation operator, approximately
70 % of the D = 3N2

1 degrees of freedom were required to
be observed to synchronize the model output with the data
(Whartenby et al., 2013). In other words, the height field and
at least one of the velocity fields at each grid point needed to
be observed.

Since these results were roughly consistent among the
three resolutions tested, we restrict our discussion here to the
case where N1 = 16. Representative plots of the height and
velocity fields are shown in Fig. 1. The total number of de-
grees of freedom is D = 3N2

1 = 768, for which Whartenby
et al. (2013) estimated Ls ≈ 524= 0.68D. Based on the dis-
cussion above and the lectures by Cardinali (2013), we see
that this requirement, which is expected to be even higher in
practice, exceeds the number of measurements now available
by at least a factor of 2.

5 Results with time delay nudging for the shallow
water equations

We now demonstrate that the time delay method is capable
of reducing Ls, by showing that it can construct success-
ful estimates and predictions without directly observing the
horizontal velocity fields. This strategy was shown to fail
by Whartenby et al. (2013) with static (DM = 1) nudging.
Thus, we assume height measurements alone are made at
each grid point (i,j) for i,j = {1,2, . . .,16=N1}, so L=
256< 524≈ Ls, as estimated by Whartenby et al. (2013).

The initial state x(t0) for the model and the data are taken
to have the forms

h(i,j)(t0)=

(
π A0

N11Y

)2

[
cos(ωφ φ(r(i,j))+ δφ)+ cos(ωθ θ(r(i,j))+ δθ )

]
+H0,

u(i,j)(t0)= A0
∂ψ(r(i,j))

∂y
,

v(i,j)(t0)=−A0
∂ψ(r(i,j))

∂x
, (11)

with the parameters H0 = 5100 m, A0 = 106 and

ψ(r)= cos
(
ω′φ φ(r)+ δ

′
φ

)
sin
(
ω′θ θ(r)+ δ

′
θ

)
. (12)

The functions φ and θ , respectively, evaluate the latitude and
longitude at the point r(i,j) on the grid. All fields as well as
the variables {x,y, t} were scaled by the values in Table (1),
to make them dimensionless. The parameters ωφ , ωθ , ω′φ , ω′θ
and δφ , δθ , δ′φ , δ′θ are chosen arbitrarily, so that the phase and
period of the initial condition are different for truth and the
estimate. Also, although the method is capable of estimating
the static model parameters, here they are considered known.
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Table 1. Parameters used in the generation of the shallow water “data” for the twin experiment. All fields as well as {x,y, t} were scaled by
the values in the table, so all calculations were done with dimensionless variables.

Parameter Physical quantity Value in twin experiments

1t Time step 36 s
1X East–west grid spacing 50 km
1Y North–south grid spacing 50 km
H0 Equilibrium depth 5.1 km
ϕ0 Central latitude of the β plane 3.6◦

f0 Central value of the Coriolis parameter 5× 10−5 s−1

β Meridional derivative of the Coriolis parameter 2.0× 10−11 m−1 s−1

F/ρ Wind stress 0.2 m2 s−3

A Effective viscosity 10−4 m2 s−1

ε Rayleigh friction 2× 10−8 s−1

Figure 1. Snapshots of shallow water flow on a 16×16 grid spanning 400 km on each side. Heights and velocity fields are shown: left panel
at the initial time, center panel after 30 min, and right panel after 30 h.

The coupling matrixG(t) is taken to be diagonal, with dif-
ferent weights for the heights and for the velocities. In par-
ticular, Gu,v1t = 0.5 and Gh1t = 1.5 with 1t = 0.01h=
36 s. The values ofGh are larger thanGu,Gv , since the aver-
age height is 5000±30 m, 3 orders of magnitude higher than
the average velocity 0± 5 ms−1. The time delay space cou-
pling g(t) is taken to be the identity matrix, as all the height
measurements are assumed to be known with equal temporal
precision throughout the observation window.

The time delay was selected to be τ = 101t = 0.1 h, in or-
der to maintain a balance between numerical stability and the
common criterion of independence between the components
of S(x(t)). The first minimum of the average mutual infor-
mation was also calculated to be τ ≈ 301t using the method
given by Abarbanel (1996). This is reasonably close to our
choice, and the results did not change if its value was shifted
by a few 1t .

5.1 Choosing DM

The state was estimated by integrating the coupled differ-
ential Eq. (8) from t = 0 to T = 5h= 5001t with various
DM = {1,6,8,10}. The coupling terms were then switched
off at t = T to generate predictions until t = 500 h.

Short- and long-term synchronization error (Eq. 9) trajec-
tories SE(t) are plotted in Fig. 2 for various DM. Choos-
ing DM = {1,6} yields a synchronization error that remains
around its initial value of 0.005 until the end of the 5 h ob-
servation window. After the coupling is switched off, the er-
ror rises very rapidly until stabilizing around 0.1 for the re-
mainder of the prediction window. By contrast, for DM =

{8,10} the synchronization error falls steeply to order 10−6

within the observation window. It then subsequently rises
as exp[λmax(t − T )], where λmax ≈ 1/31 h agrees with the
largest Lyapunov exponent calculated for this flow. This ex-
ponential rate of growth is particularly evident in the long
trajectory displayed in the right panel of Fig. 2.

Since DM ≥ 8 produces error values several orders of
magnitude smaller than those obtained with DM ≤ 6, we ex-
pect the state estimates x(T ) obtained with DM ≥ 8 to be
quite accurate when compared with the estimates for DM ≤

6. These estimates are now evaluated as they would be in a
true experiment, by comparing predictions on the observed
heights with additional data. In Fig. 3 the known (black),
estimated (red), and predicted (blue) height trajectories are
shown for an arbitrarily selected grid point h(6,4)(t). Short-
and long-term prediction trajectories computed withDM = 6
are displayed in Fig. 3’s upper panels, respectively. Corre-
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Figure 2. Synchronization error SE(t), defined in Eq. (9), computed with DM = {1,6,8,10}, Gh1t = 1.5, Gu1t = gv1t = 0.5, and τ =
101t = 0.1 h. Assimilation is performed for t ≤ 5 h. Left panel: the couplings are then switched off and predictions are generated using the
original dynamical Eq. (10) until t = 100 h. In the prediction window (t ≥ 5), the error in the trajectories grows roughly with the largest
Lyapunov exponent of the system λmax ≈ 1/31 h. Synchronization is evident when DM = {8,10} and not for DM = {1,6}, suggesting that
accurate predictions will be obtained for DM = {8,10}. Right panel: the same calculation, but extended to t = 500 h.

Figure 3. Upper left panel: known (black), estimated (red) and predicted (blue) values for the observed height values h(6,4)(t) at the grid
point (6,4) for DM = 6. Observations are for 0≤ t ≤ 5 h. Predictions are for 5≤ t ≤ 100 h. Upper right panel: the same calculation for
DM = 6 for a longer prediction window 5≤ t ≤ 500 h. Lower left panel: the same calculation except DM = 8. The prediction window is
5≤ t ≤ 100 h. Lower right panel: the same calculation except DM = 8. The prediction window is 5≤ t ≤ 500 h.

sponding results for DM = 8 are shown in the lower panels.
As anticipated, the predictions for DM = 8 are clearly su-
perior to those obtained with DM = 6. In addition, with the
choice DM = 7, some initial conditions synchronized, while
others did not. Further analysis of this “boundary” case is an
interesting area for future study.

The failure of predictions obtained with DM = 6 is a re-
sult of poor estimates of the unobserved states (i.e., fluid
velocities) at t = T . Although in an actual experiment we
would not be able to verify this statement directly, we may
do so here. Velocity profiles u(6,4)(t) displaying short and
long time comparisons between the known (black), estimated
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Figure 4. Upper left panel: known (black), estimated (red) and predicted (blue) for the observed x-velocity values u(6,4)(t) at grid point (6,4)
for DM = 6. Observations are for 0≤ t ≤ 5 h. Predictions are for 5≤ t ≤ 100 h. Upper right panel: the same calculation for DM = 6 for a
longer prediction window 5≤ t ≤ 500 h. Lower left panel: the same calculation except DM = 8. The prediction window is 5≤ t ≤ 100 h.
Lower right panel: the same calculation except DM = 8. The prediction window is 5≤ t ≤ 500 h.

(red), and predicted (blue) values are given in Fig. 4 for
DM = 6 in the upper panels, and for DM = 8 in the lower
panels. We find the situation is indeed as anticipated; the es-
timates and predictions are quite unacceptable for DM = 6,
whereas for DM = 8 they are highly accurate. The same im-
provement in predictive accuracy was obtained for the other
velocity component v(6,4)(t). These results are plotted in
Fig. 5.

Predictions were also calculated for DM = 1 and DM =

10, but these results are not shown. They agree with the syn-
chronization error calculations in Fig. 2, in that the predic-
tions generated with DM = 10 are just as accurate as those
for DM = 8. Likewise, predictions with DM = 1 (i.e., simple
nudging) are very poor, in accordance with Whartenby et al.
(2013).

5.2 Reducing the coupling strength

In the previous discussion it was suggested that reducing
the coupling strength would have a detrimental effect on the
quality of the estimation procedure and the resulting predic-
tion. We investigate this now by performing the same calcu-
lations as above with DM = 10 but reducing the coupling on

the height so that we have Gh1t =Gu1t =Gv1t = 0.5.
The synchronization error SE(t), shown in Fig. 6, upper left
panel, stabilizes to a level 3 orders of magnitude higher than
was achieved with Gh1t = 1.5, suggesting failure. This is
confirmed in the remainder of Fig. 5, which displays the
known (black), estimated (red), and predicted (blue) values
for h(6,4)(t), u(6,4)(t), and v(6,4)(t), respectively. Although
the height estimate is rather good and the prediction is not
terrible, at least for the first 15–20 h after the end of the as-
similation window, the unobserved states are clearly not well
estimated at any time t ≤ T .

This result demonstrates that proper choice of coupling is
required. However, we have not developed a systematic way
of choosing these values, and it is known from classical re-
sults on synchronization that the optimal choice depends on
the number and distribution of observations. Furthermore,
the fact that the height estimates appear to be rather accurate
also emphasizes the point that, in a true experiment, the suc-
cess of the assimilation procedure must be evaluated against
the forecasts – not the analyses.
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Figure 5. Upper left panel: known (black), estimated (red), and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point
(6,4) forDM = 6. Observations are for 0≤ t ≤ 5 h. Predictions are for 5≤ t ≤ 100 h. Upper right panel: the same calculation forDM = 6 for
a longer prediction window 5≤ t ≤ 500 h. Lower left panel: the same calculation except DM = 8. The prediction window is 5≤ t ≤ 100 h.
Lower right panel: the same calculation except DM = 8. The prediction window is 5≤ t ≤ 500 h.

5.3 Further reducing the number of measurements

In addition, until now we have conveniently chosen to ob-
serve the height field at all L=N2

= 256 grid locations. We
now attempt to reduce L even further, by repeating the analy-
sis with L= 252 and L= 248 height measurements, chosen
at arbitrary grid points. From the results displayed in the up-
per left panel of Fig. 7, it is evident that forL= 252 rapid and
accurate synchronization is still achieved, while for L= 248
it is not. In addition, the known (black), estimated (red), and
predicted values (blue) for h(6,4)(t) are shown in the other
panels of Fig. 7 for L= 248 and L= 252, respectively. Re-
sults for the unobserved velocity fields agree as well, though
these results are not shown.

Thus, even with time delays, it may not be possible to
significantly reduce the number of required height measure-
ments. We remark however that the overall space of parame-
ters appearing in our study has not been thoroughly explored.
Additional refinement of the parametersG(t), g(t),DM, and
τ may further reduce this constraint, for instance, by allow-
ing G(t) to be non-diagonal.

5.4 Noise in the observations

We now repeat the above calculations for L= 252 with
Gaussian noise N(0,σ ) added to the height observations.
A comparison is shown in Fig. 8 for σ = {0.2,0.5} and
DM = {8,10}. The synchronization error still falls rapidly
within the observation window, although not to O(10−5), as
in the noiseless case. In the prediction window, it rises in
an exponential manner as expected. Furthermore, results fail
to synchronize when the magnitude of the noise gets large
enough. This transition occurs at roughly σ = {1.3,2.0} for
DM = {8,10}, respectively. These results were included to
show that the method appears to be relatively robust to small
errors in the observations. A more thorough examination of
the impact of imperfect observations will be given elsewhere.

5.5 Using drifter data

Another quite important source of observations about ocean
flows is being provided by position measurements r(t) of
Lagrangian drifters (Mariano et al., 2002). Such observa-
tions have been shown to be a good supplement to the tra-
ditional observations made on a fixed grid (Kuznetsov et al.,
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Figure 6. Data assimilation results withDM = 10 and reduced coupling on the height component h(6,4)(t) at location (6,4), gh1t = gu1t =
gv1t = 0.5. All other parameters are the same. Upper left panel: SE(t) for 0≤ t ≤ 200 h. Upper right panel: known (black), estimated (red),
and predicted (blue) for the observed height values h(6,4)(t) at grid point (6,4) forDM = 10. Observations are for 0≤ t ≤ 5 h. Predictions are
for 5≤ t ≤ 100 h. Lower left panel: known (black), estimated (red), and predicted (blue) for the observed x-velocity values u(6,4)(t) at grid
point (6,4) for DM = 6. Observations are for 0≤ t ≤ 5 h. Predictions are for 5≤ t ≤ 100 h. Lower right panel: known (black), estimated
(red), and predicted (blue) for the observed y-velocity values v(6,4)(t) at grid point (6,4) for DM = 6. Observations are for 0≤ t ≤ 5 h.
Predictions are for 5≤ t ≤ 100 h.

2003) and they can also be used to estimate an Eulerian ve-
locity field (Molcard et al., 2003; Piterbarg, 2008; Salman
et al., 2006). In this section, we combine the time delay
method with a data set from drifter measurements to show
that they can provide accurate estimates for the grid state
variables

{
h(r(i,j), t),u(r(i,j), t),v(r(i,j), t)

}
, without much

additional effort.
We monitor the positions of ND drifters deployed at ran-

domly chosen grid locations and afterwards allowed to move
freely to provide spatially continuous measurements between
grid points. Drifters were also deactivated when they reached
the boundary of the grid, so the number of operational
drifters decreases throughout the estimation window. The dy-
namics of drifters are approximated as two-dimensional fluid
parcel motion near the surface of the water layer, which are
determined by the Lagrangian equations

dr(n)(t)
dt

= u(r(n)(t), t), (13)

where r(n)(t) is the position of the nth drifter and this equa-
tion was simulated by linear interpolation of the discrete ve-
locity fields (Press et al., 2007; Thomson and Emery, 2014).
Hybrid measurements are incorporated into the time delay
nudging method by combining the grid variables and the col-
lective drifter positions

ξ†(t)=
{[
r(1)(t)

]†
,
[
r(2)(t)

]†
, . . .,

[
r(ND)(t)

]†}
into a single hybrid state vector. The corresponding time
delayed vectors are Y drifter(t)= {Y grid(t),Y drifter(t)} and
Sdrifter(t)= {Sgrid(t),Sdrifter(t)}, respectively, where

Y
†
drifter(t)

=

{
ξ

†
data(t),ξ

†
data(t + τ), . . .,ξ

†
data (t + τ (DM− 1))

}
,

S
†
drifter(t)

=

{
ξ

†
model(t),ξ

†
model(t + τ), . . .,ξ

†
model (t + τ (DM− 1))

}
.
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Figure 7. Synchronization error and known, estimated, and predicted height values for L= 248 height measurements at each observation
time and for L= 252 height measurements at each observation time. Upper left panel: SE(t) for L= 248 and L= 252 over 0≤ t ≤ 5 h in
the observation window, and 5≤ t ≤ 500 h after the couplings are removed. Upper right panel: known (black), estimated (red), and predicted
(blue) values of the height h(6,4)(t) at grid point (6,4) for 0≤ t ≤ 100 h for L= 248. Lower panel: known (black), estimated (red), and
predicted (blue) values of the height h(6,4)(t) at grid point (6,4) for 0≤ t ≤ 100 h for L= 252. This shows the rather sharp transition
between bad predictions (L= 248) and good predictions (L= 252).

We consider cases with ND = 0 (no drifters), as well as
ND = 20 and ND = 64, in addition to L= 208 and L= 128
grid observations. Example plots showing the initial loca-
tions for ND = 20 and ND = 64 are given in Fig. 9. While
many runs were successful using the same setup described
above, the results were somewhat dependent on where the
drifters were initialized. These results are not shown.

The consistency of the results improved by choosing the
initial estimate to only magnitude from the true solution,
rather than in both phase and frequency as was done above.
Specifically, for the results reported below the initial condi-
tions of the dataψdata(r

(i,j), t0) and hdata(r
(i,j), t0) and of the

model ψmodel(r
(i,j), t0) and hmodel(r

(i,j), t0) are related by
ψdata(r

(i,j), t0)= C0ψmodel(r
(i,j), t0) and hdata(r

(i,j), t0)=

C0 hmodel(r
(i,j), t0). We choose C0 = 1.0+ 0.1η, with η se-

lected from a uniform distribution in the interval [−1,1]. The
velocity fields are found as above, using ψ(r, t0) as a stream
function.

In Fig. 10, we show the synchronization error of observed
quantities when DM = 8, keeping all other parameters the
same as in the previous calculations. We present (in red)

the synchronization error for L= 208 height observations
and ND = 20 drifter observations, and we show (in blue)
the same synchronization error when L= 208 and ND = 0
drifters are deployed. With L= 208, namely, observing 27 %
of the heights and 20 drifters, the synchronization error con-
verges to a small value within the 5 h observation window.
Without drifters, the estimation fails. Furthermore, by in-
creasing the number of drifters to ND = 64 within a 30 min
observation window, synchronization can be achieved with
L= 128 height observations. Snapshots of the fields at dif-
ferent times throughout the estimation and prediction win-
dow are shown in Fig. 11 for comparison.

Although we have not yet explored how to balance the
number of drifters and the number of height (or other) mea-
surements, these preliminary results suggest that positional
data from drifters can be useful for improving the observ-
ability of the system. In contrast to other approaches in which
the drifter data are used to directly interpolate the grid vari-
ables (Kuznetsov et al., 2003), our method transfers posi-
tional information from the drifters to the estimate through
the dynamical model. Whether this approach is valid for real
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Figure 8. The effect of noise levels in the initial condition for the
solution of the model Eq. (10) on SE(t). We show the results for
DM = 8 and 10 for added Gaussian noiseN(0,σ ) with σ = 0.2 and
0.5. For this range of noise levels added to the initial condition for
generating the data in our twin experiments, we see that the detailed
values of SE(t) change. In the case of both DM = 8 and DM =
10, SE(t) still becomes quite small in the observation window 0≤
t ≤ 5 h, suggesting that predictions for t ≥ 5 will remain robustly
accurate.

Figure 9. Initial positions for left panel ND = 20 drifters and right
panel ND = 64 drifters.

data remains to be seen however. Furthermore, the time delay
method provides a natural way to incorporate this informa-
tion into the analysis.

6 Discussion and summary

The transfer of information from measurements of a chaotic
dynamical system to a quantitative model of the system is im-
peded when the number of measurements at each measure-
ment time is below an approximate threshold Ls, which can
be established in a twin experiment. Whartenby et al. (2013)
previously showed that for a nonlinear model for shallow wa-
ter flow, a standard nudging technique given by Eq. (2) re-
quires direct observation of roughly 70 % of the dynamical

Figure 10. SE(t) for our standard twin experiment described in de-
tail earlier when we utilize drifter information, and when we do
not utilize drifter information. When the number of observations of
height isL= 208, we see that without drifter information (blue line)
there is no synchronization and correspondingly inaccurate predic-
tions (not shown). When information from 20 Lagrangian drifters
is added during data assimilation using time delay nudging, SE(t)
decreases very rapidly (red line), indicating predictions will be very
accurate (also not shown). The efficacy of small numbers of drifters
is clear in this example.

variables {h(r, t),u(r, t),v(r, t)} at each measurement time
to synchronize the model output with the observations.

Here we have demonstrated how information in the time
delays of the observations may be used to reduce this require-
ment to about 30 %, in which only the height fields need be
observed. Moreover, it appears Ls can be even further re-
duced by adding positional information from drifters, which
interpolate the height field at locations between grid points.

Although all this has been done on a simplified model of
shallow water flow, implemented with only D = 3N2

1 = 768
degrees of freedom, the process can be used to analyze in-
creasingly realistic and complex models of coupled earth
systems. Since the successful analysis of simulated data is
a prerequisite for success with real data, this methodology
provides a way to assess where one stands with respect to
critical observability limits of the system at hand.

Furthermore, we expect that this formalism will gener-
alize to systems substantially larger than the one presented
here, although we do not underestimate the numerical chal-
lenges involved in its extension to, say, the scale of opera-
tional NWP models. We also suspect this issue of insufficient
measurements to be a critical limitation in our current ability
to predict the behavior of complex, chaotic systems. Since
such systems are quite typical in practice, these issues need
to be examined with more realistic models.

Harking back to the introduction, we note that the report
by Cardinali (2013) indicates that 30–40 million daily ob-
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Figure 11. Comparison of the estimated and predicted fields {h(t),u(t),v(t)} between the truth (left column) and analyses, run with obser-
vations of 128 height variables, both with (center column) and without (right column) drifters. Snapshots are taken 3 min (upper row) into
the assimilation window, at 30 min at the end of the assimilation window (center row), and 90 min into the prediction window (bottom row).

servations are now available at the ECMWF, and that many
NWP models comprise upwards of 108 degrees of freedom.
If the qualitative trends shown here, in which time delays
provide successful predictions with only 30 % of the state
variables observed, can be extended to substantially larger
systems, then this method may indeed be useful for improv-
ing the forecasts of existing operational NWP models.

7 Data availability

Data used in this article are available at public data repository
https://github.com/JasonAn/DataforNPG-23-1-2016.
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