Articles | Volume 24, issue 2
https://doi.org/10.5194/npg-24-279-2017
https://doi.org/10.5194/npg-24-279-2017
Research article
 | 
15 Jun 2017
Research article |  | 15 Jun 2017

Formulation of scale transformation in a stochastic data assimilation framework

Feng Liu and Xin Li

Related authors

A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023,https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Climate change and runoff contribution by hydrological zones of cryosphere catchment of Indus River, Pakistan
Kashif Jamal, Shakil Ahmad, Xin Li, Muhammad Rizwan, Hongyi Li, and Jiaojiao Feng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-548,https://doi.org/10.5194/hess-2018-548, 2018
Preprint withdrawn
Short summary
Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau
Youhua Ran, Xin Li, and Guodong Cheng
The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018,https://doi.org/10.5194/tc-12-595-2018, 2018
Short summary
Soil Moisture Estimation Based on Probabilistic Inversion over Heterogeneous Vegetated Fields Using Airborne PLMR Brightness Temperature
Chunfeng Ma, Xin Li, and Shuguo Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-34,https://doi.org/10.5194/hess-2017-34, 2017
Manuscript not accepted for further review
Short summary
DasPy 1.0 – the Open Source Multivariate Land Data Assimilation Framework in combination with the Community Land Model 4.5
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015,https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Comparative study of strongly and weakly coupled data assimilation with a global land–atmosphere coupled model
Kenta Kurosawa, Shunji Kotsuki, and Takemasa Miyoshi
Nonlin. Processes Geophys., 30, 457–479, https://doi.org/10.5194/npg-30-457-2023,https://doi.org/10.5194/npg-30-457-2023, 2023
Short summary
How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary
Using orthogonal vectors to improve the ensemble space of the ensemble Kalman filter and its effect on data assimilation and forecasting
Yung-Yun Cheng, Shu-Chih Yang, Zhe-Hui Lin, and Yung-An Lee
Nonlin. Processes Geophys., 30, 289–297, https://doi.org/10.5194/npg-30-289-2023,https://doi.org/10.5194/npg-30-289-2023, 2023
Short summary
Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236, https://doi.org/10.5194/npg-30-217-2023,https://doi.org/10.5194/npg-30-217-2023, 2023
Short summary

Cited articles

Apte, A., Hairer, M., Stuart, A. M., and Voss, J.: Sampling the posterior: An approach to non-Gaussian data assimilation, Physica D, 230, 50–64, https://doi.org/10.1016/j.physd.2006.06.009, 2007.
Atkinson, P. M. and Tate, N. J.: Spatial scale problems and geostatistical solutions: a review, Prof. Geogr., 52, 607–623, https://doi.org/10.1111/0033-0124.00250, 2000.
Bartle, R. G.: The Elements of Integration and Lebesgue Measure, Wiley, New York, 1995.
Billingsley, P.: Probability and Measure, 2nd Edn., John Wiley & Sons, New York, 1986.
Bocquet, M., Pires, C. A., and Wu, L.: Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation, Mon. Weather Rev., 138, 2997–3023, https://doi.org/10.1175/2010MWR3164.1, 2010.
Download
Short summary
This is the first mathematical definitions of the spatial scale and its transformation based on Lebesgue measure. An Ito process-formed geophysical variable with respect to scale was also provided. The stochastic calculus for data assimilation discovered the new expressions of error caused by spatial scale transformation. The results improve the ability to understand the spatial scale transformation and related uncertainties in Earth observation, modelling and data assimilation.