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Abstract. Understanding the errors caused by spatial-scale
transformation in Earth observations and simulations re-
quires a rigorous definition of scale. These errors are also
an important component of representativeness errors in data
assimilation. Several relevant studies have been conducted,
but the theory of the scale associated with representative-
ness errors is still not well developed. We addressed these
problems by reformulating the data assimilation framework
using measure theory and stochastic calculus. First, mea-
sure theory is used to propose that the spatial scale is a
Lebesgue measure with respect to the observation footprint
or model unit, and the Lebesgue integration by substitution
is used to describe the scale transformation. Second, a scale-
dependent geophysical variable is defined to consider the het-
erogeneities and dynamic processes. Finally, the structures of
the scale-dependent errors are studied in the Bayesian frame-
work of data assimilation based on stochastic calculus. All
the results were presented on the condition that the scale is
one-dimensional, and the variations in these errors depend
on the differences between scales. This new formulation pro-
vides a more general framework to understand the represen-
tativeness error in a non-linear and stochastic sense and is a
promising way to address the spatial-scale issue.

1 Introduction

The spatial scale in Earth observations and simulations refers
to the observation footprint or model unit in which a geo-
physical variable is observed or modelled (scale is used be-

low as an abbreviation for spatial scale). Scale is tradition-
ally defined in terms of distance, which is not adequate both
because distance is a one-dimensional quantity while scale
generally refers to a two- or three-dimensional space and
because the scale may change in a very complicated man-
ner (for example, from an irregular observation footprint to
a square observation footprint). Generally, the scale is not
explicitly expressed in the dynamics of a geophysical vari-
able, partially because a rigorous definition of scale is dif-
ficult to find, except for an intuitive conception (Goodchild
and Proctor, 1997) and certain qualitative classifications of
scale (Vereecken et al., 2007). This reflects the complexity
of scale and consequently requires a more rigorous mathe-
matical conceptualisation of scale.

The scale transformation of a geophysical variable may re-
sult in significant errors (Famiglietti et al., 2008; Crow et al.,
2012; Gruber et al., 2013; Hakuba et al., 2013; Huang et al.,
2016; Li and Liu, 2017; Ran et al., 2016). These errors are
mainly caused by the strong spatial heterogeneities (Miralles
et al., 2010; Li, 2014) and irregularities (Atkinson and Tate,
2000) that are associated with geophysical variables across
different scales, and are also closely related to dynamic vari-
ations, e.g. in hydrological (Giménez et al., 1999; Vereecken
et al., 2007; Merz et al., 2009; Narsilio et al., 2009), soil
(Ryu and Famiglietti, 2006; Lin et al., 2010) and ecological
(Wiens, 1989) processes. How to elucidate the scale transfor-
mation by developing mathematical tools has yet to be fully
addressed.

Data assimilation could be an ideal tool to explore the
scale transformation because it presents a unified and gener-
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alised framework in Earth system modelling and observation
(Talagrand, 1997). Geophysical data are typically observed
by various Earth observations; thus, updating the observation
data in a data assimilation system may result in scale trans-
formations between the observation space and system state
space. If observation operator is strongly non-linear and com-
plex, the errors caused by the scale transformation are even
more serious (Li, 2014). An important concept that is re-
lated to the scale transformation in data assimilation is “rep-
resentativeness error”, which is associated with the inconsis-
tency in the spatial and temporal resolutions between states,
observations and operators (Lorenc, 1986; Janjić and Cohn,
2006; van Leeuwen, 2014; Hodyss and Nichols, 2015), and
the missing physical information that is related to a numer-
ical operator compared to the ideal operator (van Leeuwen,
2014), such as the discretisation of a continuum model or
neglect of necessary physical processes. The representative-
ness error and instrument error make up the observation error
of data assimilation. Under the Gaussian assumption, they
are independent of each other (Lorenc, 1995; van Leeuwen,
2014). This study will not consider the instrument error when
formulating the scale transformation in data assimilation.

Recently, approaches have been developed to assess the
representativeness error. Janjić and Cohn (2006) studied the
representativeness error by treating system state as the sum
of resolved and unresolved portions. Bocquet et al. (2011)
used a pair of operators, namely, restriction and prolonga-
tion, to connect the relationship between the finest regular
scale and a coarse scale, and determined the representative-
ness error using a multi-scale data assimilation framework.
van Leeuwen (2014) considered two complicated cases, i.e.
conducting the observation vector in a finer resolution com-
pared with system state vector and assimilating the retrieved
variables. Their solutions were formulated using an agent
in observation or state space, and a particle filter was pro-
posed to treat the non-linear relationship between observa-
tions, states and retrieved values. Hodyss and Nichols (2015)
also estimated the representativeness error by investigating
the difference between the truth and the inaccurate value that
is generated by forecasting model.

Although these approaches explored the structure of the
representativeness error and offered various solutions, im-
provements are still necessary to investigate the exact ex-
pression of the errors caused by scale transformation in data
assimilation. The authors believe that these approaches are
optimal in linear systems but may not be suitable when ob-
servations are heterogeneous and sparse, or when operators
are non-linear between states and observations, although the
general equations in the non-linear case were given. With-
out taking heterogeneities and non-linear operators into ac-
count, the representativeness error cannot be fully under-
stood. However, heterogeneity varies depending on the sit-
uation and is difficult to formulate in a general theoretical
study.

Data assimilation studies based on stochastic processes
(Apte et al., 2007; Miller, 2007) or a stochastic dynamic
model (Miller et al., 1999; Eyink et al., 2004) have been pro-
posed recently. Compared to deterministic models, stochas-
tic data assimilation is more applicable in an integrated and
time-continuous theoretical study (Bocquet et al., 2010) and
creates an infinite sampling space of the system state (Apte et
al., 2007). Although the theorems of calculus that are based
on stochastic processes (or stochastic calculus) are different
from those of ordinary calculus, these advantages suggest
that stochastic data assimilation offers a more general frame-
work to study scale transformation.

We attempt to explore the mathematic definitions of scale
and scale transformation, and then formulate the errors
caused by the scale transformation on stochastic data assim-
ilation in a general theoretical study. The next section in-
troduces the basic concepts and theorems of measure the-
ory, stochastic calculus and data assimilation. In Sect. 3, we
present the definitions of scale and scale transformation. The
posterior probability of system state is also reformulated by
scale transformation in a stochastic data assimilation frame-
work. In the final section, the contributions and deficiencies
of this study are discussed.

2 Basic knowledge

The scale greatly depends on the geometric features of a cer-
tain observation footprint or model unit. The model unit is a
specified subspace where a geophysical variable evolves in
the model space; it could be a point, a rectangular grid, or an
irregular unit such as a response unit (watershed, landscape
patch, etc.). We offer a solution in which the definition of
scale uses measure theory and the expression of a geophysi-
cal variable as a stochastic process uses stochastic calculus.
Therefore, we first introduce several basic concepts of mea-
sure theory and stochastic calculus.

2.1 Measure theory

Let � be an arbitrary non-empty space. F is a σ -algebra (or
σ -field) of subsets of � that satisfies the following condi-
tions:

i. � ∈ F, and the empty set 8 ∈ F ;

ii. A ∈ F implies that its complementary set Ac
∈ F ;

iii. A1A2, . . . ∈ F implies their union A1 ∪A2 ∪ ·· · ∈ F .

A set function µ of F is called a measure if it satisfies the
following conditions:

1. µ(A) ∈ [0,∞) and µ(8)= 0;
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2. If A1A2, . . . ∈ F is any disjoint sequence and
∞⋃
k=1

Ak ∈

F , µ is countably additive such that µ
(
∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

If µ(�)= 1, µ can be replaced by the probability mea-
sure p, and if µ is finite, p can be calculated as p(A)=
µ(A)/µ(�). The triples (�,F,µ) and (�,F,p) are the
measure space and probability measure space, respectively.

Let � be the set of real numbers R and σ -algebra B be
Borel algebra, which is generated by all closed intervals in
R. Then, ∀A= [a,b] ∈ B, a Lebesgue measure on R is de-
fined as I (A)= b− a. Intuitively, the Lebesgue measure on
R coincides with the length.

An n-dimensional Lebesgue volume is defined to measure
the standard volumes of the subsets in Rn based on In (A)=
n∏
k=1

(bk − ak), where A= [x : ak ≤ xk ≤ bk,k = 1,2, . . .,n]

is an n-dimensional regular cell in Rn. The n-dimensional
Lebesgue volume is an ordinary volume, such as length
(n= 1), area (n= 2) and volume (n= 3).

Next, the outer measure is defined as mn (A)=

inf
{
+∞∑
i=1

In (Ai)

}
, where inf {·} is the infimum, Ai =[

x : ai,k ≤ xk ≤ bi,k,k = 1,2, . . .,n
]

is the n-dimensional

regular cell inRn, andA⊆
+∞⋃
i=1

Ai . Thus, ifA is any subset of

Rn, one can collect many sets of n-dimensional regular cells
{Ai} to cover A. Among them, the outer measure denotes the
set, whose union has the smallest n-dimensional Lebesgue
volume.

Actually the outer measure does not match the two con-
ditions of a measure, but one can define the outer measure
mn as a Lebesgue measure on measure spaces (Rn,Ln,mn),
where Ln is the Lebesgue σ -algebra of Rn. The construction
of the Lebesgue σ -algebra is based on the Caratheodory con-
dition (Bartle, 1995, definition 13.3). Fortunately, almost all
of the observation footprints and model units are finite and
closed; therefore, they are Lebesgue measurable. This conse-
quently ensures that the Lebesgue measure mn is a measure
and the triple (Rn,Ln,mn) is a measure space. The Lebesgue
measure of a Lebesgue measurable subset in Rn also coin-
cides with its volume.

The n-dimensional Lebesgue integral in (Rn,Ln,mn) is∫
f dmn, where f is a real function on Rn. The Lebesgue in-

tegral can be further denoted by
∫
f dmn =

∫
f (x)dx, where

x ∈ Rn and x = (x1, . . .,xn).
In the two-dimensional case (n= 2), the Lebesgue integral

is∫ ∫
A

f (x1,x2)dx1dx2,

where A ∈ L2. Next, we consider the Lebesgue in-
tegration by substitution on R2. Let T (x1,x2)=

[t1 (x1,x2) , t2 (x1,x2)]=
[
y1,y2

]
be a one-to-one map-

ping of a subset X onto another subset Y on R2. Assuming
that T is continuous and has a continuous partial derivative

matrix Tx =
(
∂t1/∂x1 ∂t1/∂x2
∂t2/∂x1 ∂t2/∂x2

)
, then

∫ ∫
Y

f (y1,y2)dy1dy2 =

∫ ∫
X

f (T (x1,x2)) |J (x1,x2)|dx1dx2,

where the Jacobian determinant |J (x1,x2)| = detTx =∣∣∣∣ ∂t1/∂x1 ∂t1/∂x2
∂t2/∂x1 ∂t2/∂x2

∣∣∣∣. If T is linear, the integral reduces to

∫ ∫
Y

f (y1,y2)dy1dy2 = |J (x1,x2)|

∫ ∫
X

f (T (x1,x2))dx1dx2.

By doing so, any observation footprint or model unit can
be regarded as a Lebesgue measurable subset in a two-
dimensional space R2.

Additional details regarding measure theory can be found
in the literature (for example, Billingsley, 1986; Bartle,
1995).

2.2 Stochastic calculus

We then introduce some necessary concepts and theorems of
stochastic calculus without proofs; their detailed derivations
can be found in the literature (Itô, 1944; Karatzas and Shreve,
1991; Shreve, 2005).

Stochastic calculus is defined for ordinary integrals with
respect to stochastic processes. One of the simplest stochastic
processes defined on (�,F,p) is Brownian motion W . It is
characterised as follows:

1. W (0)= 0.

2. ∀t1 > s1 ≥ t2 > s2 ≥ 0, the increments W (t1)−W (s1)

and W (t2)−W (s2) are independent.

3. ∀t > s ≥ 0, W (t)−W (s)∼N (0, t − s) .

The last two conditions represent that ∀t2 > s2 ≥ t1 > s1 ≥ 0,
W (t2)−W (s2) andW (t1)−W (s1) are independent Gaussian
random variables.

Stochastic calculus based on Brownian motion produces
an Ito process. The differential form of the time-dependent
Ito process is

dI = ϕ (t)dt + σ (t)dW (t), (1)

where ϕ (t) ,σ (t) and W (t) are the drift rate, volatility rate
and Brownian motion, respectively. The integral form of
Eq. (1) is

I (t)= I (0)+

t∫
0

ϕ (u)du+

t∫
0

σ (u)dW (u). (2)
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Theorem 1: For any Ito process defined as in Eq. (1), the
quadratic variation that is accumulated on the interval [0, t]
is

[I,I ](t)=

t∫
0

σ 2 (u)du, (3)

and the drift of Eq. (1) is I (0)+
t∫

0
ϕ (u)du.

As distinguishing features of stochastic calculus, the
quadratic variation and drift can be regarded as stochastic
versions of the variance and expectation, respectively. That
is, the variance and expectation are instances of their stochas-
tic counterparts within a certain integral path. Therefore,
rather than being constants, the quadratic variation and drift
are given in terms of probability.

Theorem 2 (Ito’s Lemma): If the partial derivatives of
function f (u,I ), viz. fu (u,I ), fI (u,I ) and fII (u,I ), are
defined and continuous. If t ≥ 0, we have

f (t,I (t))= f (0,I (0))+

t∫
0

fu (u,I (u))du

+

t∫
0

fI (u,I (u))σ (u)dW (u)

+

t∫
0

fI (u,I (u))ϕ (u)du

+
1
2

t∫
0

fII (u,I (u))σ
2 (u)du. (4)

Ito’s Lemma is typically used to build the differential of
a stochastic model with Ito processes. In this study, Ito’s
Lemma is applied to study the scale-dependent relationship
between the observation and state and the errors caused by
scale transformation.

2.3 Traditional formulation of data assimilation in the
Bayesian theorem framework

We use the well-accepted Bayesian theory of data assimi-
lation (Lorenc, 1995; van Leeuwen, 2015) to investigate its
time- and scale-dependent errors. State and observation are
first assumed to be one-dimensional.

A non-linear forecasting system can be described by

X(tk)=Mk−1:k (X (tk−1))+ η(tk) , (5)

where Mk−1:k (·), X(tk) and η(tk) represent a non-linear
forecasting operator that transits the state from the discrete
time k− 1 to k, the state with prior probability distribution
function (PDF) p(X) and the model error at time k, respec-
tively.

If a new observation is available at time k, the observation
system is given by

Y o (tk)=Hk (X (tk))+ ε (tk) , (6)

where Hk (·), Y o (tk) and ε (tk) represent the non-linear ob-
servation operator, true observation with prior PDF p(Y ) and
observation error at time k, respectively.

Previous studies (e.g. Janjić and Cohn, 2006; Bocquet et
al., 2011) described the origins of the components of ε (tk)
and η(tk), such as white noise, the discretisation error of a
continuum model, the errors that are caused by missing phys-
ical processes, and the scale-dependent bias. In this study,
we assume that both forecasting and observation operators
are perfect models; thus, errors caused by missing physical
processes are discarded.

According to Bayesian theory, the posterior PDF of the
state based on the addition of a new observation into the sys-
tem is

p(X|Y )= p(Y |X)p(X)/p (Y ), (7)

where p(X|Y ) is the posterior PDF that presents the PDF
value of state X given an available observation Y . p(Y |X)
is a likelihood function, which is the probability that an ob-
servation is Y given a state X. p(X) and p(Y ) are the prior
PDF values of the state and observation, respectively. Here,
p(X) is supposed to be known and p(Y ) is a normalisation
constant (van Leeuwen, 2014). The aim of data assimilation
is equivalent to finding the posterior PDF p(X|Y ).

3 Reformulation of scale transformation in data
assimilation framework

3.1 Definition of scale

We define the scale based on the measure theory that was in-
troduced in Sect. 2. The relationship between Lebesgue mea-
sure in

(
R2,L2,m2) and scale is first introduced by the fol-

lowing measures of Earth observations.
Measure of a single-point observation: when the observa-

tion footprint is very small and homogeneous, we assume
that its footprint approaches zero, and its measure is accord-
ingly zero under the condition of the Lebesgue measure.

Measure along a line: the measure is a one-dimensional
Lebesgue measure.

Measure of a rectangular pixel (for example, remote sens-
ing observation): ∀A= [x : ak ≤ xk ≤ bk,k = 1,2], it is a
two-dimensional Lebesgue volume, i.e. µiii (A)= I 2 (A)=

2∏
k=1

(bk − ak).

Measure of a footprint-scale observation: the footprint is
any bounded closed domain A, which is not necessary to
be regular rectangles, but can also be circles or ellipses.
We use Lebesgue measure on R2, i.e. µiv (A)=m2 (A)=
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inf
{
+∞∑
i=1

I 2 (Ai)

}
, where Ai =

[
x : ai,k ≤ xk ≤ bi,k,k = 1,2

]
and A⊆

+∞⋃
i=1

Ai . Clearly, measures (i)–(iii) are special cases

of the measure of a footprint-scale observation.
All of the above measures depend mainly on the shape and

size of A. The Lebesgue measure on R2 coincides with the
area; thus, the Lebesgue integral of µiv (A) is

∫∫
A

dx1dx2,
where the real function f ≡ 1.

Now, we can generalise the above examples by defining
the scale as the Lebesgue measure with respect to the ob-
servation footprint. This definition can also be extended to
a certain model unit. Thus, for any subset A ∈ L2, the scale
is s =m2 (A)=

∫∫
A

dx1dx2, where the real function f ≡ 1.
From a geometric perspective, the measure function m2 (·)

refers to the shape of the subset, and the scale further indi-
cates its size.

We represent the scale as s, and let s0 =m2
0 (A0)=∫∫

A0
dx1dx2 = 1 be the standard scale, where A0 =

[x : 0≤ xk ≤ 1,k = 1,2] is the unit square in R2. The stan-
dard scale can be regarded as a basic unit of scale. It presents
a standard reference by which one can make a quantitative
comparison between different scales. The standard scale is
also the origin of scales that lets scales vary similarly to other
physical quantities, such as time.

We can further define scale transformation. For ∀A1A2 ∈

L2, if there are two different scales, s1 =m
2 (A1)=∫∫

A1
dx1dx2 and s2 =m

2 (A2)=
∫∫
A2

dy1dy2, then we can
obtain s2 =

∫∫
A2

dy1dy2 =
∫∫
A1
|J (x1,x2)|dx1dx2 based on

Lebesgue integration by substitution, where the Jacobian ma-
trix J (x1,x2) represents the geometric transformation from
A1 to A2. In particular, if J (x1,x2)= diag(ξ,ξ) , ξ ∈ R,
which also indicates that the geometric transformation is lin-
ear, then the following expression is valid based on Lebesgue
integration by substitution:

s2 = |J (x1,x2)|
∫∫
A1

dx1dx2 = ξ
2s1, (8)

where s1 and s2 represent the change of the one-dimensional
rule.

If two scales follow the one-dimensional rule, they
are geometrically similar. This rule simplifies scale
as a one-dimensional variable that corresponds to the
scale transformations between most remote sensing
images with various spatial resolutions. For example,
∀A= [x : a ≤ xk ≤ b,k = 1,2], where A and the unit square
A0 are geometrically similar, and the scale s = µiii (A) can
be expressed by the one-dimensional rule of scale transfor-
mation: s = µiii (A)= |J (x1,x2)|

∫∫
A0

dx1dx2 = (b− a)
2s0.

For another example, let s =
∫∫
A

dy1dy2 be the scale
of a disc footprint A with radius r . The map-
ping function between A and A0 is T (x1,x2)=

[rx1 cos(2πx2) ,rx1 sin(2πx2) ;0≤ x1 ≤ 1,0≤ x2 ≤ 1]=[
y1,y2

]
, and the Jacobian determinant |J (x1,x2)| =

Figure 1. Diagram of the relationships among a Lebesgue measure,
scale and geophysical variable.

∣∣∣∣ r cos(2πx2) −2πrx1 sin(2πx2)

r sin(2πx2) 2πrx1 cos(2πx2)

∣∣∣∣= 2πr2x1. Therefore,

s =
∫∫
A

dy1dy2 =
∫∫
A0
|J (x1,x2)|dx1dx2 = πr

2s0, which
is equal to its area. However, s0 and s do not obey the
one-dimensional rule because the Jacobian matrix is not
diagonal.

Layer 1 in Fig. 1 shows the relationship between the
Lebesgue measure and scale. The measure space �=

[x : 0≤ xk ≤ 4, k = 1,2] is regularly divided by the unit
square A0. Let scales sC1 =m

2
C1 (C1), sC2 =m

2
C2 (C2) and

sC3 =m
2
C3 (C3) be the Lebesgue measures of disc ob-

servation footprints C1, C2 and C3, respectively. Then,
m2

C1 (·)=m
2
C2 (·)=m

2
C3 (·) because they are the same

Lebesgue measure functions. That is, if {Ai} is the set
with the smallest volume that covers C1, then simi-
lar sets {Ai + 2} and {Ai × 3+ 2} can be used (with
the origin located in the upper-left corner) to cover
C3 and C2 with the smallest volumes, respectively.
Here, Ai + 2=

[
xi : xi,k + 2, xi,k ∈ Ai,k = 1,2

]
and Ai ×

3+ 2=
[
xi : xi,k × 3+ 2, xi,k ∈ Ai,k = 1,2

]
, which proves

that functions m2
C1 (·), m

2
C2 (·) and m2

C3 (·) collect the de-
sired set based on the same scheme; therefore, they are
identical. Additionally, sC2 =m

2
C2 (C2)=

∑
I 2 (Ai × 3+ 2)

is much larger than sC1 =m
2
C1 (C1)=

∑
I 2 (Ai) and sC3 =

m2
C3 (C3)=

∑
I 2 (Ai + 2). Therefore, the scale of C2 is not

equal to the two other scales because the volumes of their
subsets are different. However, their scales are governed by
one-dimensional rules because their measures are identical
and the Jacobian matrices between them are diagonal.

3.2 Stochastic variables in data assimilation

Instead of using Eqs. (5) and (6), which are discrete
in time, we use Ito process-formed expressions with the
one-dimensional infinitesimals ds and dt to formulate a
continuous-time (or continuous-scale) state and observation.

A geophysical variable can be regarded as a real function
V (s, t), and it maps the space

(
R2,L2,m2) onto R, where

s is the scale, s =m2 (A), A ∈ L2, and t is the time. In n-
dimensional data assimilation, a geophysical variable V is

www.nonlin-processes-geophys.net/24/279/2017/ Nonlin. Processes Geophys., 24, 279–291, 2017



284 F. Liu and X. Li: Formulation of scale transformation

related to an element of state vector X at a specific scale s
and time t .

In Fig. 1, layer 2 presents a heterogeneous geophysical
variable in the entire region. If we aggregate layer 2 into
layer 1 and let each pixel intensity be the value for a geo-
physical variable in that pixel, then the measure space �
is heterogeneous. A geophysical variable represents a spa-
tial average in a specific observation footprint with a specific
scale. Therefore, the geophysical variables in C1 and C3 are
not equal because their observation footprints are different,
and the geophysical variables in C2 and C3 are also different
because the scale changes. The former introduces that the
geophysical variables vary with the location, and the latter
states that the geophysical variables are scale dependent.

If the statistical properties of the geophysical variable are
available, we can construct an explicit stochastic equation for
it. We introduce the time-dependent Ito process Eq. (1) to
define the geophysical variable process:

dV = p(t)dt + q (t)dW (t) . (9)

Similarly, the geophysical variable is supposed to evolve via
a stochastic process, for which the dynamic process and un-
certainty are allowed to vary with scale,

dV = ϕ (s)ds+ σ (s)dW (s), (10)

where ϕ (s) and σ (s) are the scale-based drift rate and
volatility rate, respectively. The geophysical variable is a
probabilistic process with respect to scale and thus has scale-
dependent errors, where the scale should shift forward or
backward based on the condition that the scale follows the
one-dimensional rule.

Equation (9) can be regarded as a continuous-time version
of Eq. (5), i.e. the estimation of the state is equal to the in-
tegral of Eq. (9) over a time interval. Here, p(t) indicates
the physical process with respect to time, and q (t) is the er-
ror only caused by the evolution of time; thus, model error η
in Eq. (5) contains more parts than q (t). Equation (10) im-
plies that the value and variance of a geophysical variable
may change if the scale changes. The formulation of ϕ (s)
should consider the spatial heterogeneities and physical pro-
cess variations among different scales, which together con-
stitute the deterministic part of a geophysical variable. How-
ever, neither of them is well understood in a general theoreti-
cal study. Therefore, ϕ (s) is conceptualised in Eq. (10). Par-
ticularly, if the study region is homogeneous, then the values
of a variable that are observed at the same place are identical
between the large scale and fine scale, and ϕ (s) can be left
out. Due to the integral over the space of Brownian motion,
σ (s) is the stochastic part, meaning that scale transformation
produces uncertainties.

The state in the forecasting step can be expressed by
Eq. (9) because only time is involved. In the analysis step
of data assimilation, the state does not pertain to time, and

we assume that the scale has a quantifiable effect on the er-
rors in this step; thus, both the states and observations can be
defined by Eq. (10).

3.3 Expression of scale transformation in a stochastic
data assimilation framework

First, we provide the following lemma.
Lemma 1: for ∀s0 > 0, let W ∗ (0)=W (s0)−

W (s0) , . . .,W
∗ (s)=W (s0+ s)−W (s0); then,W ∗ (s)s ≥ 0

is a Brownian motion.
Remark on Lemma 1: obviously, W ∗

is Brownian motion because W ∗ (0)= 0
and the increments

[
W ∗ (si+1)−W

∗ (si)
]

are equal to
[
W (s0+ si+1)−W (s0+ si)

]
.

Therefore, E
[
W ∗ (si+1)−W

∗ (si)
]
= 0 and

Var
[
W ∗ (si+1)−W

∗ (si)
]
= si+1− si .

Note that in the definition of Brownian motion, the param-
eter starts at zero. However, the scale is realistically greater
than zero, which means that it cannot be directly applied in
Brownian motion. Therefore, Lemma 1 is logical because
it implies that W (s)s ≥ s0 is an equivalent expression of
W ∗ (s)s ≥ 0. Therefore, beginning with the standard scale,
the Brownian motion and stochastic calculus with respect to
scale can be further developed.

In the following content, we use Brownian motion with a
parameter that starts at s0 to define the scale-dependent geo-
physical variables; therefore, the classic expressions above
are changed. According to Lemma 1, Eq. (3) is given by

[I,I ](s)=

s∫
s0

σ 2 (u)du. (11)

Additionally, the integral form of Eq. (10) is

V (s)= V0+

s∫
s0

ϕ (u)du+

s∫
s0

σ (u)dW (u), (12)

where V0 = V (s0), and the drift of Eq. (12) is

V0+

s∫
s0

ϕ (u)du.

Similarly, Eq. (4) becomes

f (s,I (s))= f (s0,I (s0))+

s∫
s0

fu (u,I (u))du

+

s∫
s0

fI (u,I (u))σ (u)dW (u)

+

s∫
s0

fI (u,I (u))ϕ (u)du
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+
1
2

s∫
s0

fII (u,I (u))σ
2 (u)du.

Now, we make the following assumptions.
Assumption 1: the scale transformations between the state

and observation spaces of data assimilation obey the one-
dimensional rule as defined in Sect. 3.1.

Assumption 2: in the forecasting step, the model unit
equals the scale of the state space, and both of them are con-
stant.

Assumption 3: in the analysis step, the state, observation
and observation operator are scale dependent. Only one ob-
servation is added into the data assimilation system at a time.

In assumption 1, the one-dimensional rule ensures that
scale changes in a sense of geometrical similarity (for exam-
ple, from a larger square observation footprint to a smaller
square observation footprint, or from C2 to C3 as pre-
sented in Fig. 1). Therefore, based on assumption 1, scale
only varies in one-dimensional space, meaning that the cor-
responding scale transformation is an integral over one-
dimensional space.

Assumption 2 indicates that the model unit and state scale
are supposed to be the same and both invariant in space and
time. Thus, there is no scale transformation in the forecasting
step; thus, Eq. (9) can adequately describe this step.

Based on assumption 3, the analysis step is related to the
scale. The scale transformation is only involved in the pro-
cess of mapping the state vector from state space to observa-
tion space. According to Eq. (10), the state and observation
in the analysis step are

dX = ϕX (s)ds+ σX (s)dW (s) (13)

and

dY = ϕY (s)ds+ σY (s)dW (s), (14)

where ϕX (s), σX (s), ϕY (s) and σY (s) represent the scale-
dependent drift rates and volatility rates of stateX and obser-
vation Y , respectively. ϕ (s) also implies the heterogeneities
and physical processes from standard scale to a specific scale,
which may be hard to formulate. σ (u) can be regarded as the
stochastic perturbation with respect to scale.

Based on the above discussion, the integral forms of the
state are

X(sX)=X0+

sX∫
s0

ϕX (s)ds+

sX∫
s0

σX (s)dW (s) . (15)

For the observation, we have

Y (sY )= Y0+

sY∫
s0

ϕY (s)ds+

sY∫
s0

σY (s)dW (s) . (16)

In Eqs. (15) and (16), the time t is omitted, and sX, sY , X0
and Y0 represent the scale of the state space, scale of the ob-
servation space, state in s0 and observation in s0, respectively.
These formulas prove that the value of state varies with the
changes of scale.

The Bayesian equation of data assimilation (Eq. 7) pro-
duces the posterior PDF p(X|Y ) that is associated with the
likelihood function p(Y |X) and the distributions of the state
and observation. In addition, under the condition that the
variances exist, assumption 1 states that the scales vary in
one-dimensional space, which results in

X ∼N

X0+

sX∫
s0

ϕX (s)ds,

sX∫
s0

σ 2
X (s)ds

 and (17)

Y ∼N

Y0+

sY∫
s0

ϕY (s)ds,

sY∫
s0

σ 2
Y (s)ds

 . (18)

Equations (17) and (18) are the prior PDFs of state and ob-
servation with respect to scale in state space and observation
space, respectively. These two prior PDFs are introduced into
the Bayesian theorem that is reformulated by scale.

Then, we calculate the posterior PDF. The scale-dependent
observation operator is H (s,I ), which suggests that the ob-
servation operator and its parameters are both susceptible to
the scale. If H (s,I ) is defined, its continuous partial deriva-
tives are Hs (s,I ), HI (s,I ) and HII (s,I ). In line with Ito’s
Lemma, we get an estimation of observation in the obser-
vation space (the notations (u,X(u)) and (u) were omitted,
Hs =Hs (u,X(u)), σX = σX (u), etc.)

H (sY ,X (sY ))

=H (s0,X0)+

sY∫
s0

Hsdu+

sY∫
s0

HIσXdW (u)

+

sY∫
s0

HIϕXdu+
1
2

sY∫
s0

HIIσ
2
Xdu

=H (s0,X0)+

sY∫
s0

[
Hs +HIϕX +

1
2
HIIσ

2
X

]
du

+

sY∫
s0

HIσXdW (u). (19)

Assumption 1 suggests that the observation and state
spaces have the same probability measure; thus, the
Brownian motions in these two spaces are equiva-
lent. Equation (19) can also be rewritten by replacing
s0 with sX, namely H (sY ,X (sY ))=H (sX,X (sX))+∫ sY
sX

(
Hs +HIϕX +

1
2HIIσ

2
X

)
du+

∫ sY
sX
HIσXdW (u), and

then we obtain

Y (sY )−H (sY ,X (sY ))= Y (sY )
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−

H (sX,X (sX))+ sY∫
sX

(
Hs +HIϕX +

1
2
HIIσ

2
X

)
du


+

sY∫
sX

(−HIσX)dW (u). (20)

Equation (20) can be regarded as an Ito process, and its drift
is

Y (sY )−

H (sX,X (sX))+ sY∫
sX

(
Hs +HIϕX +

1
2
HIIσ

2
X

)
du

 . (21)

The last integral term in Eq. (21) is the difference in the
first-order differential observation operator between the state
scale sX and the observation scale sY . This term illustrates
that the mapping process should consider not only the obser-
vation operator but also the first-order differential term when
state is mapped to the observation space. The former is typ-
ically determined from the literature, whereas the latter was
derived in this study for the first time. This result prompted
us to further consider the first-order differential of the obser-
vation operator when calculating the representativeness error.

The quadratic variation of Eq. (20) is

sY∫
sX

H 2
I σ

2
Xdu. (22)

This equation suggests that the uncertainty in the observation
error includes the change in the observation operator from
scale sX to sY . Therefore, Eqs. (21) and (22) can be combined
to produce

p(Y |X)=N
(
Y (sY )−

[
H (sX,X (sX))+

sY∫
sX

(
Hs

+HIϕX +
1
2
HIIσ

2
X

)
du
]
,

sY∫
sX

H 2
I σ

2
Xdu

)
. (23)

Based on Eqs. (17), (18) and (23), p(Y |X), p(X) and p(Y )
are stochastic functions that depend on the scale; thus, the
posterior PDF of the state is scale-dependent as well.

In particular, if Y is a direct observation, which means
that the observation is of the same physical quantity and
scale as the state, and for simplicity, assume that X is
only influenced by scale-dependent Gaussian noises, viz.
H (s,X(s))=X(s)=X0+

∫ s
s0

dW (s). Then the result be-
comes

Y (sY )−X(sY )= Y (sY )−X(sX)−

sY∫
sX

dW (u) and (24)

p(Y |X)=N {Y (sY )−X(sX) , |sY − sX|} . (25)

In Eq. (24), the integral
∫ sY
sX

dW (u) can be regarded as the
noise based on the increment of Brownian motion with re-
spect to scale, and its expectation equals zero.

The significance of Eqs. (20)–(25) is that the effect of scale
on the posterior PDF can be determined quantitatively. In ad-
dition to the model error and instrument error (both were not
introduced explicitly in this study because they have little in-
fluence on the error caused by scale transformation), a new
type of error in data assimilation was discovered in the analy-
sis step. The expectation of the posterior PDF may vary with
the scale of the state space if Y is an indirect observation,
and the variance of the drift depends on the difference be-
tween sY and sX (based on Eq. 22). In addition, if Y is a di-
rect observation andX is only influenced by scale-dependent
Gaussian noises (Eqs. 24 and 25), the expectation of the pos-
terior PDF is the difference between Y and X, and the vari-
ance is equal to the increment of Brownian motion with re-
spect to the scale. Additionally, if the results are not derived
from assumption 1, i.e. the scale varies randomly, the poste-
rior PDF is more complex because the Jacobian matrix in the
Lebesgue integration of scale transformation is arbitrary.

3.4 Example: the stochastic radiative transfer
equation (SRTE)

To explicitly show how the stochastic scale transformations
impact assimilation, we introduce an illustrative example
based on the scales presented in Fig. 1. Assume that in the
analysis step, the state has the standard scale s0, whose ob-
servation footprint is the unit square A0. If the scale of ob-
servation space is sC1 and its observation footprint is the disc
C1, then the Jacobian matrix of the transformation between
the scales of the state space and observation space is not diag-
onal according to the statements in Sect. 3.1, leading the two
scales to not obey the one-dimensional rule and be against
assumption 1. However, if the scales of state space and ob-
servation space are sC3 and sC2, respectively, assumption 1
is met, and it can be determined that sX = sC3 =

π
4 s0 and

sY = sC2 =
9π
4 s0.

Now the scales of state space and observation space obey
the one-dimensional rule, and we further presume that the
measure space � in Fig. 1 is free of spatial heterogeneities
and dynamic process variations depending on scale. Conse-
quently, the drift rate ϕ (s)= 0. If the value of state in the
standard scale is denoted as X0 and assuming that σ (s)= 1,
then the prior PDF of state isX ∼N

(
X0,

∣∣π
4 s0− s0

∣∣) accord-
ing to Eq. (17), where

∣∣π
4 s0− s0

∣∣ is not a real number and is
only used to indicate the variation when the scale changes.

If H (s,X(s))=X(s), the observation has
the same physical quantity as the state, and ac-
cording to Eq. (25), the likelihood function
is p(Y |X)=N {Y (sY )−X(sX) , |sY − sX|} =

N {Y (sY )−X(sX) , |sC2− sC3|} =

N
{
Y (sY )−X(sX) ,

∣∣∣ 9π
4 s0−

π
4 s0

∣∣∣}.
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To formulate the likelihood function in the case that the
observation is different from the state, the SRTE will be
employed in the following text. The SRTE is a stochas-
tic integral-differential equation that describes the radiative
transfer phenomena through a stochastically mixed immisci-
ble media. Scientists have developed analytical or numerical
methods for finding the stochastic moments of the solution,
such as the ensemble averaged and the variance of the ra-
diation intensity (Pomraning, 1998; Shabanov et al., 2000;
Kassianov and Veron, 2011).

Consider the general expression of the SRTE (leaving out
the scattering and emission),

−µ
dI (τ )

dτ
=−I (τ ) , (26)

where I (τ ), µ and τ are the radiation intensity, coefficient of
radiation direction and optical depth, respectively.

To tie into more substantial random optical properties of
the transfer media, such as absorption and scattering, the op-
tical depth τ is assumed to be stochastic. This suggests that
the optical depth is a scale-dependent Ito process and can be
expressed as

dτ (s)= ϕτ (s)ds+ στ (s)dW (s) . (27)

This causes the radiation intensity to depend on scale.
The analytical solution of Eq. (26) is I (τ )= I0e

τ/µ,
where I0 = I (τ (s0)).

SRTE can be considered as a concrete instance of a
stochastic observation operator by defining H (s,x (s))=

I (x)= I0e
x/µ. Therefore, its first- and second-order deriva-

tives are Hs (s,x (s))= 0, Hx (s,x (s))=
1
µ
I0e

x/µ and

Hxx (s,x (s))=
1
µ2 I0e

x/µ. Based on Ito’s Lemma,

dI (τ (s))= dH (s,τ (s))=Hs (s,τ (s))ds

+Hx (s,τ (s))dτ(s)+
1
2
Hxx (s,τ (s))dτ(s)dτ(s)

=
1
µ
I0e

τ(s)/µdτ(s)+
1

2µ2 I0e
τ(s)/µdτ(s)dτ(s)

=
1
µ
I (τ(s))dτ(s)+

1
2µ2 I (τ (s))dτ(s)dτ(s)

=

(
1
µ
I (τ(s))

)
στ (s)dW(s)+

(
1
µ
I (τ(s))

)
ϕτ (s)ds

+

(
1

2µ2 I (τ (s))

)
σ 2
τ (s)ds

=

(
σ 2
τ (s)

2µ2 +
ϕτ (s)

µ

)
I (τ (s))ds+

(
στ (s)

µ

)
I (τ (s))dW(s) .

(28)

The radiation intensity is a scale-dependent Ito process. The
difference between Eq. (28) and the general Ito process is
that there is a primitive function I (τ (s)) in the integral term.
Therefore, the uncertainty of the radiation intensity is more
complex because it is related to both the change of scale and
the primitive function.

Integrating both sides of Eq. (28) yields the general solu-
tion of the radiation intensity,

I (τ (s))= C · exp
[∫ (

σ 2
τ (s)

2µ2 +
ϕτ (s)

µ

)
ds

+

∫ (
στ (s)

µ

)
dW(s)

]
, (29)

where the constant C ∈ R. Equation (29) further indicates
that I (τ (s)) is a scale-dependent Ito process.

Considering that the optical depth τ is the state, the radia-
tion intensity I is the observation and I (τ (s)) is the observa-
tion operator, the results in Sect. 3.3 could easily be applied
here. For example, Eqs. (20) and (23) become

Y (sY )−H (sY ,X (sY ))= I (τ (sY ))− I (τ (sX))

−

sY∫
sX

1
µ2

(
σ 2
τ

2µ
+ϕτ +

σ 2
τ I (τ )

2µ2

)
I 2 (τ )du

−

sY∫
sX

στ

µ2 I
2 (τ )dW (u), (30)

p(Y |X)=N

(
I (τ (sY ))− I (τ (sX))

−

sY∫
sX

1
µ2 I

2 (τ )

(
σ 2
τ

2µ
+ϕτ +

σ 2
τ I (τ )

2µ2

)
du,

sY∫
sX

σ 2
τ

µ4 I
4 (τ )du

)
. (31)

Then, the posterior PDF of the data assimilation can be de-
termined by Eqs. (27), (29) and (31).

4 Discussion and conclusions

4.1 Discussion

Our study offered a stochastic data assimilation framework to
formulate the errors that are caused by scale transformations.
The necessity of the methodology, the difference from pre-
vious works by other investigators, and the advantages and
limitations of this study are discussed as follows.

The reasons that the methodology focuses on a stochas-
tic framework are as follows. First, the stochastic data as-
similation framework is essentially consistent with the con-
cepts of scale and scale transformation; both are associ-
ated with corresponding measure spaces (�,F,µ). There-
fore, it is natural to regard the state space and observation
space as two different measure spaces, and each element of
state (or observation) vector can be seen as a geophysical
variable that maps the state (or observation) measure space
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onto R. Correspondingly, as the integrals of random pro-
cesses with respect to random processes, stochastic calcu-
lus was ultimately adopted. Second, using stochastic calcu-
lus can also formulate the errors caused by scale transfor-
mations. The study proceeds with and improves the under-
standing of representativeness error in terms of scale. The
results did not only prove the conventional point that the un-
certainties of these errors mainly depend on the differences
between scales but also indicated that the first-order differ-
ential of the non-linear observation operator should be incor-
porated in representativeness error. Third, the error caused
by scale transformation was presented in a general form.
The drift and quadratic variation of error were formulated by
Eqs. (21) and (22), respectively, and both defined the proba-
bility distribution space of p(Y |X). Last, stochastic calculus
can be extended to meet a general scale transformation and
formulate the corresponding representativeness error, which
was unattainable in previous work. For example, if the scale
changes randomly, say, from an irregular footprint to another
irregular footprint, the stochastic equation can offer a multi-
ple integral to present this type of scale transformation, such

as V (x,y)= V0+
Y∫
Y0

X∫
X0

ϕ (x,y)dxdy+
Y∫
Y0

X∫
X0

σ (x,y)dW1(x)

dW2(y), whereW1(x) andW2(y) are two independent Brow-
nian motions.

The significant innovation of this work is as follows. We
developed a more rigorous formulation of the scale and scale
transformation based on Lebesgue measure, which places
the related concepts in a rigorous mathematical framework
and then provides a new understanding of the errors caused
by scale transformation. In addition, due to the Ito process-
formed state and observation, a stochastic data assimilation
framework was proposed by considering the non-linear oper-
ators, heterogeneity of a geophysical variable and a general
Gaussian representativeness error. The scale transformation
is also non-linear if the one-dimensional rule is not applied.
Additionally, Ito process-formed state and observation offer
the drift rate (i.e. ϕ (s) in Eq. 10) to formulate the heterogene-
ity associated with scale transformation. It also permits the
representativeness error to be general Gaussian in this frame-
work. If all the integrands in Eqs. (13) and (14) are non-linear
functions instead of constants, then these two equations can
be integrated over the field of Brownian motion, and state
and observation are the general Gaussian processes of scale.
Based on these functions, the representativeness error is a
general Gaussian process.

As a theoretical exploration towards scale transformation
and stochastic data assimilation, there is still much room for
improvement. First, we reduced the scale transformation by
the one-dimensional rule, and let the variables in data assim-
ilation evolve regularly according to assumptions 1–3; thus,
only the ideal result was investigated. Therefore, an in-depth
and comprehensive exploration should be conducted in the
future to describe other situations in the real world. How-

ever, the use of either an arbitrary scale transformation or the
geophysical variable without ignoring the drift rates will ob-
tain lengthy results. Therefore, the second improvement fo-
cuses on how to make the formulation more concise. Lastly,
noting that all the results in our framework were given in
terms of probability, it is necessary to implement real-world
applications of these theoretical results, such as introducing
some concrete dynamic models to formulate the Ito process-
formed geophysical variable of scale.

4.2 Conclusions

In this study, we mainly addressed two basic problems as-
sociated with scale transformation in Earth observation and
simulation. First, we produced a mathematical formalism of
scale and scale transformation by employing measure the-
ory. Second, we demonstrated how scale transformation and
its associated errors could be presented in a stochastic data
assimilation framework.

We revealed that the scale is the Lebesgue measure with
respect to the observation footprint or model unit. The scale
is related to the shape and size of a footprint, and scale trans-
formation depends on the spatial change between different
footprints. We then defined the geophysical variable, which
further considers the heterogeneities and physical processes.
A geophysical variable consequently expresses the spatial
average at a specific scale.

We formulated the expression of scale transformation
and investigated the error structure that is caused by scale
transformation in data assimilation using basic theorems
of stochastic calculus. The formulations explicate that the
first-order differential of the non-linear observation opera-
tor should be considered in representativeness error, and the
uncertainty of representativeness error is directly associated
with the difference between scales. A concrete physical mod-
els (SRTE) was introduced to demonstrate the results when
observation operator is non-linear.

This work conducted a theoretical exploration of formu-
lating the errors caused by scale transformation in a stochas-
tic data assimilation framework. We hope that the stochastic
methodology can benefit the study of these errors.

Data availability. No data sets were used in this article.
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Appendix A: Notation

Table A1. Basic notations.

� Non-empty space
F σ -algebra
µ Measure
dV Variable process
W (s) Brownian motion
(�,F,µ) Measure space
In N -dimensional Lebesgue volume
mn Lebesgue measure or an outer measure on Rn

Ln Lebesgue σ -algebra of Rn∫
f dmn Lebesgue integral
|J (·)| Jacobian determinant

Table A2. New notations.

Notation Name Explanation Index

s Scale The observation footprint or model unit to observe or model a geo-
physical variable

Sects. 1 and 3.1

A0 Unit square in R2 Sect. 3.1
s0 Standard scale A Lebesgue integral where A0 is the unit area Sect. 3.1

One-dimensional rule Two scales are geometrically similar Eq. (8)
V Geophysical variable Estimation of a variable at a specific scale Sect. 3.2
dX State process Ito process-formed state Eq. (13)
dY Observation process Ito process-formed observation Eq. (14)
X0 State at s0 Eq. (15)
Y0 Observation at s0 Eq. (16)
sX Scale of state space Eq. (15)
sY Scale of observation space Eq. (15)
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