Articles | Volume 24, issue 2
Nonlin. Processes Geophys., 24, 125–139, 2017

Special issue: Current perspectives in modelling, monitoring, and predicting...

Nonlin. Processes Geophys., 24, 125–139, 2017

Research article 06 Mar 2017

Research article | 06 Mar 2017

Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

Xiaolin Yu et al.

Related authors

A Study of Capturing AMOC Regime Transition through Observation-Constrained Model Parameters
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys. Discuss.,,, 2021
Preprint under review for NPG
Short summary
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829,,, 2020
Short summary
Mitigation of model bias influences on wave data assimilation with multiple assimilation systems using WaveWatch III v5.16 and SWAN v41.20
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054,,, 2020
Short summary
Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207,,, 2019
Short summary
Impact of an observational time window on coupled data assimilation: simulation with a simple climate model
Yuxin Zhao, Xiong Deng, Shaoqing Zhang, Zhengyu Liu, Chang Liu, Gabriel Vecchi, Guijun Han, and Xinrong Wu
Nonlin. Processes Geophys., 24, 681–694,,, 2017
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
An early warning sign of critical transition in the Antarctic ice sheet – a data-driven tool for a spatiotemporal tipping point
Abd AlRahman AlMomani and Erik Bollt
Nonlin. Processes Geophys., 28, 153–166,,, 2021
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119,,, 2021
Short summary
Behavior of the iterative ensemble-based variational method in nonlinear problems
Shin'ya Nakano
Nonlin. Processes Geophys., 28, 93–109,,, 2021
Short summary
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41,,, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22,,, 2021
Short summary

Cited articles

Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Anderson, J.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
Annan, J. D., Lunt, D. J., Hargreaves, J. C., and Valdes, P. J.: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter, Nonlin. Processes Geophys., 12, 363–371,, 2005.
Barth, A., Canter, M., Schaeybroeck, B. V., Vannitsem, S., Massonnet, F., Zunz, V., Mathiot, P., Alvera-Azcarate, A., and Beckers, J.: Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean, Ocean Modell., 93, 22–39, 2015.
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteorol. Soc., 131.613, 3323–3344, 2005.
Short summary
Parameter estimation (PE) with a global coupled data assimilation (CDA) system can improve the runs, but the improvement remains in a limited range. We have to come back to simple models to sort out the sources of noises. Incomplete observations and the chaotic nature of the atmosphere have much stronger influences on the PE through the state estimation (SE) process. Here, we propose the guidelines of how to enhance the signal-to-noise ratio under partial SE status.