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Abstract. The uncertainties in values of coupled model pa-
rameters are an important source of model bias that causes
model climate drift. The values can be calibrated by a pa-
rameter estimation procedure that projects observational in-
formation onto model parameters. The signal-to-noise ra-
tio of error covariance between the model state and the pa-
rameter being estimated directly determines whether the pa-
rameter estimation succeeds or not. With a conceptual cli-
mate model that couples the stochastic atmosphere and slow-
varying ocean, this study examines the sensitivity of state–
parameter covariance on the accuracy of estimated model
states in different model components of a coupled system.
Due to the interaction of multiple timescales, the fast-varying
“atmosphere” with a chaotic nature is the major source of the
inaccuracy of estimated state–parameter covariance. Thus,
enhancing the estimation accuracy of atmospheric states is
very important for the success of coupled model parameter
estimation, especially for the parameters in the air–sea in-
teraction processes. The impact of chaotic-to-periodic ratio
in state variability on parameter estimation is also discussed.
This simple model study provides a guideline when real ob-
servations are used to optimize model parameters in a cou-
pled general circulation model for improving climate analy-
sis and predictions.

1 Introduction

Nowadays, a coupled atmosphere–ocean general circulation
model is widely used as a common tool in climate research
and related applications. However, due to the approximation
nature of model numeric schemes and physical parameter-
ization, a model always has errors. In particular, one tradi-
tionally determines the values of model parameters by ex-
perience or a trial procedure which heuristically provides a
reasonable estimate but usually is not optimal for the cou-
pled model. Recently, with the aid of information estima-
tion (filtering) theory (e.g., Jazwinski, 1970), research on
optimization of coupled model parameters based on instan-
taneous observational information has grown quickly (e.g.,
Wu et al., 2013; Liu et al., 2014a, b; Li et al., 2016). Tra-
ditional data assimilation that only uses observations to esti-
mate model states (i.e., state estimation) becomes both state
estimation (SE) and parameter estimation (also called op-
timization) (PE) with observations. Such a PE process can
be implemented through a variational (adjoint) method (e.g.,
Stammer, 2005; Liu et al., 2012) or an ensemble Kalman fil-
ter (e.g., Zhang et al., 2012) or even a direct Bayesian ap-
proach (e.g., Jackson et al., 2004).

In the previous study with a conceptual coupled model,
Zhang et al. (2012) pointed out that an important aspect
of successful coupled model parameter optimization is that
the coupled model states must be sufficiently constrained
by observations first. This is because multiple sources of
uncertainties exist in a coupled system consisting of differ-
ent timescale media. If the part of uncertainties in model
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states, which are not correlated with parameter errors, has
not been sufficiently constrained yet, the covariance between
the model states and parameters being estimated is noisy
(e.g., Dee and Silva, 1998; Dee, 2005; Annan et al., 2005).
Without direct observational information, the noise in state–
parameter covariance, which is the key quantity to project
observed state information onto the parameter, can bring
the estimated parameter toward an erroneous value (Zhang,
2011b). This is a general understanding about coupled model
parameter estimation. However, since multiple media of the
climate system have different timescale variability and dif-
ferent quality of observations so as to have different contri-
butions to the uncertainty of state–parameter covariance, an
outstanding question is what the impact of SE accuracy in
different media is on coupled model PE. Given the extreme
importance of state–parameter covariance for PE, a clear an-
swer for this question must further our understanding on cou-
pled model parameter estimation.

To answer this question, this study uses a simple coupled
model to examine the influence of observation-constrained
states in each medium on PE for different parameters in dif-
ferent media thoroughly. The model conceptually describes
the interactions of three typical timescales of the climate sys-
tem – chaotic (synoptic) atmosphere, seasonal–interannual
upper ocean and decadal deep ocean. A twin experiment
framework is used throughout the whole study.

The paper is organized as follows. After the introduction,
Sect. 2 gives the methodology, including brief descriptions
of the simple coupled model, filtering algorithm and twin ex-
periment framework. Section 3 first presents the results of
various PE experiments with different partial SE settings and
then analyzes the conditions for successful PE with partial
SE. Finally, the summary and discussions are given in Sect. 4.

2 Methodology

2.1 The model

To clearly address the issue posed in the introduction, this
study employs the simple pycnocline prediction model de-
veloped by Zhang (2011a, b). This conceptual coupled
model is based on Lorenz’s three-variable chaotic model
(Lorenz, 1963) that is coupled a slab ocean variable (Zhang
et al., 2012) interacting with a pycnocline predictive model
(Gnanadesikan, 1999). For the problem that this concerns,
this conceptual coupled model shares the fundamental fea-
tures with a coupled general circulation model (CGCM; see
Zhang, 2011a; Han et al., 2013). The model development can
be traced in Zhang (2011a, b) and Zhang et al. (2012) in de-
tail. Here, we only comment on major points that are relevant

to this study. The model includes five equations:

ẋ1 =−a1x1+ a1x2

ẋ2 =−x1x3+ (1+ c1w)a2x1− x2

ẋ3 = x1x2− bx3

Omẇ = c2x2+ c3η+ c4wη−Odw

+ Sm+ Ss cos(2πt/Spd)

0η̇ = c5w+ c6wη−Odη. (1)

The first three equations (Lorenz’s three-variable chaotic
model) represent the dynamics of “atmosphere”. The last
two equations, respectively, represent the dynamics of the
slab upper ocean and the pycnocline depth variation of deep
ocean. There are five variables in the model. x1, x2 and x3
are the fast-varying variables of the atmosphere with the pa-
rameters a1, a2 and b set as 9.95, 28 and 8/3, which sus-
tain the chaotic nature of the atmosphere. w and η are the
low-frequency variables of the ocean. Equation (1) tells that
the ocean in this system is driven by two kinds of forcings:
the chaotic x2 from the Lorenz equations and the periodic
cosine function term serving as the external forcing of the
system. The coupling parameter c2, which interacts with the
chaotic forcing x2, is set as 1. Od is the damping coefficient.
In this simple model, the damping coefficient is set to be
identical for the upper ocean and deep ocean as 1. Values
of other parameters such as c1, c3, c4, Sm, Ss , Spd, Om, 0,
c5, c6 are set as 10−1, 10−2, 10−2, 10, 1, 10, 10, 102, 1, 10−3

(the justification can be found in the literature cited before).
The upper ocean is slower than the atmosphere due to the
great heat capacity of water. The deep ocean is slower than
the upper ocean due to lack of mixing. The parameter Om
(0) that represents the heat capacity of upper (deep) ocean,
combined with the damping coefficient Od, defines the fluid
characteristic timescale. For example, the ratio Od /Om of
10−1 (Od = 1, Om = 10) defines the characteristic timescale
of w being 10 times of that of x2. It is important to mention
that, with these parameter settings, the chaotic atmospheric
forcing is stronger than the periodical forcing in the “ocean”
equation. The ocean feeds back to the atmosphere in the low-
frequency band; therefore, in this coupled model, the uncer-
tainty caused by chaotic atmosphere spreads to whole range
of resolved periods for both the atmosphere and the ocean.
From Eq. (1), it can be seen that the parameter a2 has a di-
rect influence on the variation of the state variable x2, and
the parameter c2 has a direct influence on the variation of the
state variable w. The estimation of these two parameters will
be used later to interpret the relation between the accuracy of
SE and success of PE. Although very simple, this low-order
(limited-size) conceptual model mimics very fundamental
natures of interactions of three typical timescales in the real
world: synoptic (chaotic) atmosphere, seasonal–interannual
upper tropical oceans and decadal/multidecadal deep ocean
(Zhang, 2011b). The boundary condition is a predefined sea-
sonally varying solar radiation: S(t)= Sm+Ss cos(2πt/Spd).
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The state variable w mimics the surface temperature of the
ocean and the x2 mimics the surface wind of the atmosphere.
Here, we may mimic some parameterization of CGCM us-
ing the relation of parameters and model variables (c2 and x2
analogous to the drag coefficient cd and wind for the stress
on ocean, for instance).

2.2 Filtering scheme

The filtering method used in this study is the ensemble
adjustment Kalman filter (EAKF; Anderson, 2001). The
EAKF algorithm shares all theoretical derivation of ensem-
ble Kalman filter (EnKF; e.g., Evensen, 1994; Houtekamer
and Mitchell, 1998) that combines an observational proba-
bility distribution function (PDF) with model PDF but un-
der an adjustment idea. After the first version (Anderson,
2001), the EAKF algorithm had improved its implemen-
tation as a sequential local least squares filter (Anderson,
2003). The EAKF is a member of ensemble square root fil-
ters (Tippett et al., 2003), taking the advantage of ensemble
Kalman filter without perturbing the observation (Whitaker
and Hamill, 2002). While the detailed and exhausted mathe-
matical derivations can be referred to the aforementioned lit-
erature and others (e.g., Zhang and Anderson, 2003), here we
mainly comment on the computational implementation with
a two-step procedure (Anderson, 2003; Zhang et al., 2007)
that is relevant to this study. The first step uses two Gaussian
convolutions to derive the observational increment at the ob-
servational location as

1yoi =

1
(σp)2

ȳp + 1
(σ o)2

yo

1
(σp)2
+

1
(σ o)2︸ ︷︷ ︸
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+
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i√

1+ (σ
p

σ o
)2︸ ︷︷ ︸

adjusted ensemble
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− y
p
i , (2)

(i = 1∼N,N is the ensemble size),

where y represents the observable state variable and σ is its
error standard deviation. A superscript p always denotes the
prior quantity estimated by the model, and o denotes obser-
vational quantity. An over-bar denotes the ensemble mean.

The second step regresses the observational increment
onto the related model states or parameters by the model
ensemble-evaluated covariance as

1pui =
cov(1p,1y)

SD(1y)2
1yoi ,

(i = 1∼N,N is the ensemble size). (3)

The linear regression in Eq. (3) is built with the help of the
20-member ensemble. 1pui is the adjusted state (parameter)
increment given the observational increment 1yoi . cov(1p,
1y) is the error covariance computed between the ensembles
of the model variable at the model grid and at the observa-
tional location (for SE) or between the ensembles of the state
variable and perturbed parameter being estimated (for PE).

Table 1. List of the successful (S) and failed (F) parameter estima-
tion (PE) cases with partial state estimation (SE) in eight PE exper-
iments (in the parenthesis is the experiment serial number).

PE

SE x2-to-a2 w-to-a2 x2-to-c2 w-to-c2

x1,2,3 by x2 obs S(1) S(2) S(3) S(4)
w by w obs F(5) F(6) F(7) F(8)

SD(1y) is the standard deviation of the ensemble of state
variables at the observational location. For example, when
using x2 to estimate c2, on each estimating step, the ensemble
of x2 and the ensemble of c2 are used to calculate the ratio of
cov /SD2 and adjust c2 toward a better value that minimizes
the errors of model states from the observations. While such
a sequential implementation provides much computational
convenience for data assimilation, the EAKF maintains the
nonlinearity of background flows as much as possible (Zhang
and Anderson, 2003; Zhang et al., 2007). It is worth mention-
ing that just as usual EnKFs or variational methods without a
model error compensation term, the EAKF has the disadvan-
tage of dealing with model errors.

Some other relevant aspects of the method are also com-
mented here. Just as in Zhang and Anderson (2003), based
on the trade-off between cost and assimilation quality, af-
ter a series of sensitivity tests on ensemble sizes of 10 and
20–100, no significant difference in the quality of standard
assimilation is found when the ensemble size is greater than
20. Thus, a practical ensemble size of 20 is chosen as a basic
experiment setting. We will examine the sensitivity of ma-
jor conclusions of the addressed problem in this study to the
ensemble size in related places later. Although the intervals
of the atmosphere and ocean observations are different in the
real world, for convenience of comparison, we set a uniform
update interval for SE (in the atmosphere and ocean) and
PE as five time steps as the basic setting in this study (we
will also discuss the influence of update intervals in related
places later). The inflation method must be included in the
EAKF PE. Considering that the inflated parameter ensem-
ble will influence state variables, no inflation is applied to
the model state ensemble. The PE inflation scheme follows
Zhang (2011b): when the SD (spread) of the parameter en-
semble is below some limit (40 % of the initial spread), a fac-
tor is applied to inflate the parameter ensemble spread to this
value. During this process, the ensemble structure of param-
eter remains unchanged. In addition, to avoid the uncertainty
and complexity of evaluating cross covariance between me-
dia that have too different characteristic timescales (Han et
al., 2013), in the SE of this study, we only allow x2 observa-
tion impact on all x variables, and w (η) observation impact
on w (η) itself, while the PE could use different medium ob-
servations.
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2.3 Twin experiment setup

Twin experiments are set to test the relation between coupled
SE and PE. The model with the standard parameter values
described in Sect. 2.1 is running 103 time units (TUs) after
a spinup of 103 TUs (2× 103 TUs in total). Here, a TU is a
dimensionless time unit as defined in Lorenz (1963), roughly
referring to the timescale of atmosphere going through from
an attractive lob to the other (1 TU equals 100 steps of the
model integrations with a 1t of 0.01). The output of last
103 TUs is then used as the “truth” to produce “observa-
tions”. The observations are sampled as the truth values su-
perimposed by a white noise with an observational interval
(five time steps in this case). To simplify, we sample the at-
mosphere observations by x2 and ocean observations by w
as the basic experiment setting. The standard deviation of
observational errors (from the in situ instruments, for exam-
ple) is 2 for x2 and 0.2 for w in our cases. Note that what
we describe here is a kind of observing system simulation
experiment (OSSE; e.g., Tong and Xue, 2005; Jung et al.,
2010). The assimilation model control is an ensemble of in-
tegrations for each test case with the perturbed parameters on
an erroneously set parameter value (will be described later).
The initial conditions of the ensemble for assimilation are
taken from the end of a 103-TU spinup (the different mem-
bers in the ensemble are all the resulting consequences from
the parameter perturbation).

The first set of PE experiments is done to study the pa-
rameters in “air–sea” interaction. To do that, we use two pa-
rameters – a2 in the atmosphere equation and c2 in the ocean
equation to perform PE experiments. We first conduct two
PE cases with full SE – both x andw are constrained by their
observations. Then, we conduct eight PE cases with partial
SE – only some medium is constrained by its observations
as listed in Table 1. Through thoroughly analyzing these PE
cases with partial SE, which have different SE accuracy, we
are able to detect the influence of the SE accuracy in differ-
ent media on coupled model PE. After the first set PE ex-
periments, we also conduct a second set of PE experiments
to examine the influence of state estimation accuracy on the
“deep ocean” parameter c6 using η observations (the obser-
vational error is set as 0.1).

In all PE cases, the initial value of the parameter to be es-
timated is deliberately set as biased from the truth (referring
to the standard parameter values described in Sect. 2.1). To
maintain the chaotic nature of the Lorenz equation, param-
eter values are required to be within a certain range. This
is a constraint for the biased amount of the initial values of
a parameter. Based on some sensitivity studies, the chaotic
performance is more vulnerable to the change of the atmo-
spheric parameter a2 than to the change of the oceanic pa-
rameters. Therefore, we set the ensemble initial values of a2
as a Gaussian distribution N (30, 1; 30 as the mean and 1
as the standard deviation), and the spread is enough for the
model ensemble uncertainty. The ensemble initial values of

Table 2. List of root mean square errors of the state variable and the
parameter during the last 100 TUs in eight PE experiments.

State and parameter

Exp. number x2 w a2 c2

S(1): x2 obs, x2-to-a2 5.9224 0.0570 0.0889 N/A
S(2): x2 obs, w-to-a2 5.9086 0.0567 0.0895 N/A
S(3): x2 obs, x2-to-c2 5.9213 0.0731 N/A 0.0250
S(4): x2 obs, w-to-c2 5.9174 0.0589 N/A 0.0153
F(5): w obs, x2-to-a2 14.6801 0.0360 1.6806 N/A
F(6): w obs, w-to-a2 14.3177 0.0381 3.2612 N/A
F(7): w obs, x2-to-c2 14.4102 0.0744 N/A 0.3848
F(8): w obs, w-to-c2 14.4004 0.0660 N/A 0.3454

c2 are set as N (0.8, 0.5; restricted to be positive definite).
If PE is successful, then the ensemble mean value of a2 (c2)

should converge to 28 (1). In all PE experiments, the PE is
activated after 80 TUs of SE constrain the model states close
to the observations so as to enhance the parameter–state co-
variance for the coupled PE (Zhang et al., 2012). The delayed
timescale of PE from SE will be discussed later.

3 Impact of SE accuracy on coupled model PE

With the method and experiment settings described in
Sect. 2, we test different PE performances under different SE
settings. Generally, with a full SE (all the atmospheric x1,2,3
and oceanic w states are estimated with the observations that
sample the truth), the PE is steady and successful, no matter
what observations are used to estimate which parameter. For
example, the result of using observations of w (in the ocean)
to estimate a2 (parameter in the atmosphere) with all simu-
lated x1,2,3 and w being estimated by x2 and w observations
is shown in Fig. 1a. We can see that the ensemble of a2 suc-
cessfully converges to the truth from the initial biased values
around 30. However, if only a part of observations (only one
medium of observations) is used in SE, then the PE succeeds
in some cases but fails in others (Fig. 1b). Next, we will an-
alyze and discuss the first set of eight cases listed in Table
1 to understand the role of different medium SE on coupled
model PE.

3.1 Stability, reliability and convergent rate of PE with
partial SE

In Table 1,X-to-Y means using observations ofX to estimate
the parameter Y (x2-to-a2 means using observations of x2 to
estimate parameter a2, for instance). Table 1 shows that all
four PE cases with atmospheric SE succeed while all four PE
cases with oceanic SE fail, no matter what medium observa-
tions are used to estimate which medium parameter. The root
mean square error (RMSE) of the model states and param-
eters during the last 100 TUs are shown in Table 2. The x2
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Figure 1. Time series of the ensemble mean (solid line) of the estimated parameter a2 using observations of w (i.e., w-to-a2) with state
estimation (SE) of (a) both the atmosphere (x1,2,3) and ocean (w) from x2 and w observations and (b) only w with the w observations. The
dashed line marks the “true” value of the parameter a2 and the shaded area represents the range of ensemble.

RMSEs in the failed cases are higher than in the successful
cases, while the w RMSEs in two failed cases F(5) and F(6)
are even smaller than the ones in successful cases. Also, in
both cases of S(2) and F(6), a2 is estimated byw observations
but only when the x states are constrained by x2 observations,
the PE is successful or otherwise the PE has failed, although
the state w is constrained by the w observations. These sug-
gest that the uncertainty of x2 is mainly responsible for the
failure of the PE. An example of failed PE in which the ob-
servations of w are used to estimate a2 is shown in Fig. 1b.
We can see the ensemble of a2 in Fig. 1b cannot converge to
its true value of 28. We will thoroughly analyze such failed
cases next.

The stability of PE is different among partial SE settings,
as shown in Figs. 2 and 3, as the time series of the ensem-
ble mean of the estimated parameters. Figs. 2b, c and 3b,
c show the four successful cases with only atmospheric SE.
Compared to full SE (using observations of x2 and w, shown
in Figs. 2a and 3a), the partial SE cases show much bigger
fluctuation in estimated parameter values at the beginning of
spinup period (Figs. 2b, c and 3b, c). From Figs. 2 and 3,
it can also be seen that generally the accuracy of PE with
partial SE is lower although overall the estimated parameter
values converge to the truth. This can be comprehended by
the lower signal-to-noise ratio of state–parameter covariance
provided by the SE process, which will be discussed in more
detail at the end of this section.

The convergence rate of PE is also obviously different with
different SE settings. The case of w-to-a2 converges much
more slowly than the other cases in a2 estimation. This phe-
nomenon can be explained by the different timescales of dif-
ferent media. Figure 4 shows the variation of the state vari-
able during SE. The observational constraint makes the mean
value and the whole ensemble follow the truth (see Fig. 4a for
x2 and Fig. 4e for w). It can be seen that in cases assimilat-
ing x2, due to no direct constraint on w and η, their spread
shrinks slowly. Instead, they are forced by the constrained
x2 but with slower adjustment of ocean processes. As men-
tioned in Sect. 2.3, the SE starts before the PE to make sure
the state needed is constrained enough. Slow shrinking of w

and η spreads shall be considered in determining a longer
delayed time for the PE related to w and η.

The inflation method is also important in PE (Yang and
DelSole, 2009; DelSole and Yang, 2010; Zhang, 2011a, b;
Zhang et al., 2012). The partial and full SE cases use the
same inflation scheme (Zhang, 2011a, b; Zhang et al., 2012).
Shadows in Figs. 1–3 show the range of the parameter en-
semble. The zigzag shape of the shadows represents the in-
flation during PE. In these figures, the width of the shadows
shrinks quickly once PE is activated, while some of the mean
values move toward the truth slowly (for example, Figs. 2c
and 3b). Also from the zigzag shapes, we can see some infla-
tion effects before the parameter converges to the truth. All
of these imply that the designed PE is stable and its conver-
gence rate is not very sensitive to the inflation scheme.

In addition, larger ensemble sizes are used to test the sen-
sitivity of the conclusion above. The results show that bigger
ensemble size has a positive impact on SE and PE quality
but the drawn conclusion from the experiments above does
not change its essence. Also, the ensemble size far exceeds
the problem size in this simple model study. In this regard,
further examination may be necessary in CGCM cases. We
also performed the experiments under different SE update
interval settings. Test results show that for the issue we are
addressing, the conclusion is not sensitive to the update in-
terval if it is within a reasonable range (x2-to-c2 and w-to-c2
fail on any update interval with SE of w and succeed with
SE of x2 in a SE interval range of no larger than 0.3 TUs, for
instance).

In case-3 and case-4 of Table 1, we successfully estimate
the oceanic parameter c2, suggesting we can use different
medium measurements to help calibrate the parameter within
a coupled model. In case-3, the atmospheric observations are
used for both SE and PE, while in case-4, the atmospheric
observations are used for SE but the oceanic observations are
used for PE. Case-3 uses only the atmospheric observations
to determine an oceanic parameter and does a better job than
when the oceanic observations are used in case-4.

The phenomenon above, in estimation of c2, can be com-
prehended by the air–sea interaction process. What about a
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Figure 2. Time series of ensemble means (solid line) of the estimated parameter a2 in three experiments, (a) x2-to-a2 (using x2 observations
to estimate a2) with SE for both x1,2,3 and w, (b) x2-to-a2 with SE for x1,2,3 only, (c) w-to-a2 with SE for x1,2,3 only. Any other notations
are the same as in Fig. 1.

Figure 3. Time series of ensemble means of the estimated parameter c2 in three experiments, (a) w-to-c2 (using w observations to estimate
c2) with SE for both x1,2,3 and w, (b) x2-to-c2 (using x2 observations to estimate c2) with SE for x1,2,3 only, (c) w-to-c2 with SE for x1,2,3
only. Any other notations are the same as in Fig. 1.

pure oceanic parameter (a parameter used for deep ocean, for
instance)? It is interesting to see the influence of atmospheric
SE accuracy on PE for a deep ocean parameter. To do that, a
series of η-to-c6 PE experiments with different SE settings is
carried out. The deep ocean observation is generally sparse in
the real world. However, within our twin experiment frame-
work described in Sect. 2.3, the observations of η used for
our PE can be produced as sufficiently as other variables.
All PE experiments on c6 are conducted with η observations
(observations of x2 and w are only used in different SE but
not used in the PE). The result is shown in Fig. 5. Given the
long timescale of η, the η PE experiments are extended to
104 TUs. The PE cases include four SE settings. They are
case-1: all state variables, case-2: x1,2,3 only, case-3: w and
η, and case-4: η only. Both case-1 and case-2 succeed greatly,
but the convergence rate of case-1 is faster than case-2 and
the accuracy of case-1 is a little higher than case-2. In case-3,
the convergence rate is fast but the estimated values remain
in a bias from the truth. Case-4 apparently fails, never sta-
bly converging to any value. It is clear that the η-to-c6 PE
succeeds only when the atmospheric state is constrained by
observations.

It is interesting that once the atmospheric states (the
Lorenz equation in this simple model) are constrained by
the observations, both the atmospheric parameter (a2) and
oceanic parameters (c2 and c6) can be successfully estimated
even in the case using the atmospheric observations (x2) to
estimate the oceanic parameter (c2) or using the ocean obser-
vations (w) to estimate the atmospheric parameter (a2). This
seems different from our previous intuition that in situ ocean

data are always considered as the first important piece of in-
formation for determining the oceanic coefficients. Our re-
sults here strongly suggest that, in the future, when real cou-
pled model PE experiments are used for determining the best
coefficient values, no matter the atmospheric or oceanic pa-
rameters, sufficient and accurate atmospheric measurements
will be crucially important. Next, we will conduct more so-
phisticate analyses to extend our understanding on this point.

In our twin experiment setting, there are three types of
model uncertainties: strong nonlinearity in the atmosphere
(chaotic in this case), weaker nonlinearity in the ocean and
biased parameter values. The SE process before PE aims to
control the first and second types of uncertainties by putting
observational constraints on model states. Figure 6 shows
the wavelet analyses for the atmospheric variable x2 and the
oceanic variable w in the truth run. They represent the uncer-
tainties of type 1 (panel a) and type 2 (panel b). With the ex-
panded exhibition of the wavelet on different periods, Fig. 6
clearly tells significantly different features of x2 and w. The
energy of x2 is in the high-frequency band and the energy of
w is in the low-frequency band. x2 varies fast and represents
the most uncertain mode, transferrable to low-frequency w
through the air–sea interaction. Later in Sect. 3.2, we will
show that the feedback of ocean can magnify the role of at-
mospheric chaotic forcings. The chaotic nature can spread
out and result in uncertainties in all frequency bands in the
system. Under such a circumstance, the method of picking
a particular frequency (e.g., Barth et al., 2015) or using av-
eraged covariance (Lu et al., 2015) to implement PE cannot
essentially resolve the issue although it may relax the prob-
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Figure 4. Time series of the state variables from the w-to-c2 PE experiment, for (a) and (d) x2, (b) and (e) w, (c) and (f) η. The upper panels
(a), (b) and (c) are from the successful case with SE for x1,2,3, and the lower panels (d), (e) and (f) are from the failed case with SE for w.
Any other notations are the same as in Fig. 1.

Figure 5. Time series of the ensemble of parameter c6 from the η-to-c6 (using η observations to estimate c6) PE experiment in four different
state estimation settings: (a) x1,2,3, w and η; (b) x2 only; (c) w and η only; and (d) η only. Any other notations are the same as in Fig. 1.

lem. Instead, reducing x2 uncertainty (enhancing the estima-
tion accuracy of the atmospheric states) is more relevant to
the solution of the problem.

Without direct observations of parameter values, PE com-
pletely relies on the covariance between the parameter and
model states for projecting the observational information of
states onto the parameter. While the PE projection is car-
ried out by a linear regression equation based on the state–
parameter covariance (EnKF/EAKF, for instance), only a
linear or quasi-linear relationship between parameters and
states in the ensemble is recognized. All failure of PE without
direct atmospheric SE could be attributed to the chaotic dis-
turbances in the atmosphere (Lorenz equations in this case)

that create difficulties for the system to build up a quasi-linear
relationship between the state variable and the parameter.

To investigate the parameter–state relationship in the
model background (prior PE), we conduct a series of pa-
rameter perturbation runs corresponding to eight partial SE
experiments (without PE to fix the parameter spread – the
PE process sets the parameter ensemble as an additional sys-
tem freedom and makes the relationship of the parameter and
model state more complicate). In that way, the parameter per-
turbations can be fully transferred to the model states so that
we can study the state–parameter relationship in a straight-
forward manner. The results are shown in Figs. 7 and 8,
where the horizontal axis is the ensemble anomaly (vs. en-
semble mean) of the state variable and the vertical axis is
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Figure 6. Wavelet analyses for (a) x2 and (b) w in the truth model run.

Figure 7. Sampling map of the perturbed parameter anomalies in the space of model state anomalies for (a) a2 vs. x2 , (b) a2 vs. w, (c) c2 vs.
x2 and (d) c2 vs. w when the atmospheric state is constrained by its observations. Dots with the same color (red or blue) represent ensembles
at the same time step in the model integration. The colored line represents a linear fitting for the same color dots. Here, we show two examples
that have a high positive (red) and negative (blue) correlation between the parameter and model state perturbations, respectively. The R value
shown in each panel is the time-averaged parameter–state correlation coefficient in last 5000 time steps.

the ensemble anomaly of the parameter, and the background
black dots represent the model runs starting from different
initial conditions. Since the parameter ensemble does not

change (once perturbed at the initial time) during the model
integration, the lines constructed by black dots in a perturba-
tion run are parallel to the x axis perfectly. However, the set
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Table 3. List of rs2n during the last 100 TUs in eight SE-only (no PE) experiments.

S(1): S(2): S(3): S(4): F(5): F(6): F(7): F(8):
x2 obs, x2 obs, x2 obs, x2 obs, w obs, w obs, w obs, w obs,
x2-to-a2 w-to-a2 x2-to-c2 w-to-c2 x2-to-a2 w-to-a2 x2-to-c2 w-to-c2

R 0.41 0.33 0.60 0.91 0.19 0.19 0.19 0.24
Sf / Sp 0.65 0.97 0.98 0.96 0.19 0.96 0.29 0.83
rs2n 0.27 0.32 0.59 0.87 0.04 0.18 0.06 0.20

of dots at the same integration time step from different initial
conditions can be used to sample the relationship between
the perturbed parameter and the model state. For example,
two sets of such ensembles, which have the biggest positive
and negative correlation coefficients between the parameters
and the model states, are colored (20 red dots and 20 blue
dots) in each case. From Fig. 7, we can see that with SE for
the atmosphere, the overall quasi-linear relationship between
the model state anomalies (observational increments) and the
parameter adjustments is constructed by the model. Under
this circumstance, a meaningful projection from the observa-
tional increment on the parameter is gained to form a signal-
dominant adjustment for the parameter ensemble. As shown
in Fig. 8, without the atmosphere SE, the linear relationship
between the parameter being estimated and the model states
is not correctly built up, and thus the parameter estimation
fails.

The relationship between the states and the parameters can
be analyzed quantitatively. Zhang et al. (2012) defined an ad
hoc index to measure the signal-to-noise ratio (called rs2n)
of a model ensemble. Following the idea, we diagnose the
signal-to-noise ratio of the ensemble-based error covariance
between the states and parameters here. The new rs2n is de-
fined as R× S, where R is the averaged correlation coeffi-
cient between the parameter perturbations and the ensemble
states in a selected time window, and S is the ratio of root
mean square linear fitting errors of the parameter–state points
in the full SE and in a partial SE (Sf / Sp). The best (worst)
representation of the signal-to-noise ratio is then character-
ized by a rs2n value of 1(0). Table 3 gives the rs2n values
for the SE-only experiments of Figs. 7 and 8. Correlation co-
efficients of F(5) and F(8) are 0.19 and 0.24, respectively.
Though the dependences of x2 on a2 in F(5) and w on c2
in F(8) are fairly direct, the low R values suggest these re-
lations can be easily interrupted by the atmospheric uncer-
tainty. The values of rs2n are much higher in the successful
cases than in the failed cases. These results clearly show that
reduction of the atmospheric uncertainty can greatly increase
the signal-to-noise ratio of the parameter–state covariance in
the system through enhancing the bonding between the state
variable and the estimated parameter.

3.2 Impact of the chaotic-to-periodic ratio in forcings
on oceanic PE

From the results above, we learned that the PE of c2 or c6
strongly relies on the SE of x. In a coupled system character-
ized as Eq. (1), the influence of atmosphere can thoroughly
propagate to all variables of other media, although the in-
fluence may reduce for the deep ocean. However, some pre-
vious studies (e.g., Annan et al., 2005; Barth et al., 2015;
Gharamti et al., 2014; Leeuwenburgh, 2008; Massonnet et
al., 2014) show their success in estimating parameters in
ocean only using oceanic observations without constraints
on atmospheric states. To understand what character of the
model makes this difference, we make full use of this simple
model with convenience to investigate the influence of model
characteristics on coupled parameter estimation. For mim-
icking the real climate signals, the variability of the oceanic
state variables w and η in Eq. (1) are driven by two kinds
of forcings: the chaotic forcing from the atmosphere (Lorenz
equations) and the periodic forcing associated with the ex-
ternal radiative forcing (simulated by a cosine function with
the amplitude coefficient of Ss in this simple model). The
oceanic states in the real world consist of both periodic and
chaotic variations. The periodic characteristic of a state is
naturally with high predictability and is generally easier to
be detected after an averaging or filtering process. In this
simple model, w (η) is directly under the influence of the
parameter c2 (c6) – perturbations of c2 (c6) first directly af-
fectingw (η) and then influencing the whole model by the in-
teractions between w (η) and other variables. To understand
the influence of chaotic/periodic variability of the ocean on
oceanic parameter estimation, we modify the model in Ap-
pendix A to set a one-way coupling model; i.e., only w is
forced by x2 but x2 remains independent from w. In that
way, we do not need to worry about the instability of Lorenz
equations due to the dramatic influence from large w values.
Then, we define a chaotic-to-periodic ratio (CPR) in the sig-
nals of w (η) to study the PE performance under the different
chaotic/periodic variability regimes of a model system. De-
tails of the CPR definition are given in Appendix B. The CPR
of w (η) can be easily manipulated by changing the coeffi-
cient of Ss . We first compare the results ofw in one-way cou-
pling (Fig. 9a) and two-way coupling (Fig. 6b) models with
the identical Ss value of 1. The CPR in the full period (from
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Figure 8. The same as Fig. 7 but for the case with SE of w only: (a) a2 vs. x2 and (b) c2 vs. w. Here, we show two examples that the linear
fitting becomes difficult in red and blue, for which the data are taken from the same time steps as shown in Fig. 7.

Figure 9. Wavelet analyses for w in the run of one-way coupling model forced by (a) Ss = 1 and (b) Ss = 250.

0.3 to 165 TUs, the longest period that is selected to avoid
boundary effects) of w in Fig. 9a is 1.0963. It is interest-
ing that the one-way coupling (without the feedback of w to
x2 in the model) can transfer more energy to low-frequency
band. Then, we perform eight PE experiments, four forw-to-
c2 and four for η-to-c6. We examine four Ss values of 100,
250, 500 and 1000, representing a reduced CPR sequence of
w (η). Their CPR values are, respectively, 1.0485 (0.6084),
1.0386 (0.6083), 1.0333 (0.6081) and 1.0282 (0.6080). Note
that the CPR value will change once a PE process is ac-
tivated. We compare these one-way coupling model results
and show two examples (Ss = 1 and Ss = 250, Fig. 9a, b for
w; Fig. 10a, b for η). We found that the increasing amplitude
of periodic forcing can enhance the periodic signals for w
and η. Clearly, when the η CPR decreases, the periodic por-
tion dominates and the η-to-c6 PE becomes more and more
robust (see Fig. 11a–d). However, in the other four w-to-c2
cases, for any w CPR, the w-to-c2 PE fails (Fig. 12a). This
is due to strong dependence of cov(w, c2) (the covariance
between w and c2) on x2 (see Eq. 1) that is still chaotic with-

out observational constraint. Though w is very periodic, the
chaotic variability of x2 sheds on the variability of w (the
needed variability of w for PE should come from c2 but now
comes from the chaotic x2) and makes the PE process mis-
judge the difference between the simulated w and its obser-
vation, thus not producing a correct PE projection.

To further test the role of periodic signals in ocean states
for oceanic PE, we conduct oceanic PE on a particular fre-
quency band using the method described in Appendix C.
Some results are shown in Fig. 12 which shows that using
the covariance of η in a particular frequency and c6 to project
the corresponding η observational information can make a
η-to-c6 PE case with Ss = 250 as successful as the result of
Ss = 1000 with full frequencies (compare Fig. 12b to 11d).
The method is designed to limit the PE process working on
the 10-TU period of η information, which dramatically re-
duces the CPR of wη (the CPR of η now is 0.1424, and the
CPR of w is 1.0525 at the beginning of the PE) and thus
helps c6 estimation, but given strong dependence of cov(w,
c2) on x2, and that the CPR of x2 is big on every frequency
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Figure 10. Time series of η with different Ss values (varying from 100 to 1000) with a one-way coupling model setting described in
Appendix A. To visualize the difference induced by different Ss values, panel (b) is the zoomed out version of the section marked in red in
panel (a).

Figure 11. Time series of the ensemble of parameter c6 in four η-to-c6 PE experiments with different Ss values: (a) 100, (b) 250, (c) 500
and (d) 1000 with the one-way coupling model setting. In all cases, only η is constrained by its observations. Any other notations are same
as in Fig. 1.

band, this particular frequency PE method does not help for
estimation of c2 (Fig. 12a).

4 Conclusion and discussions

The erroneous values of parameters in a coupled model are
a source of model bias that can cause model climate drift.
Model bias can be mitigated by PE with observational data.
The signal-to-noise ratio in state–parameter covariance plays

a centrally important role in the PE process. With a concep-
tual coupled model, we discuss the issue of how to enhance
the signal-to-noise ratio in coupled model PE through fur-
ther understanding of various aspects of the PE process in a
coupled numerical system.

We performed three kinds of comparisons to discuss the
issue. The first kind focuses on the PE performance with a
two-way coupling model. Results show that atmospheric SE
is critically important. The second comparison is carried out
by the experiments with the same parameter spread and SE
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Figure 12. Time series of the ensemble of the parameter in the (a) w-to-c2 PE with SE of w only and (b) η-to-c6 PE with SE of η only using
the one-way coupling model with Ss = 250. Note that the initial c2 in panel (a) is approximately 0.56, and the truth is 1. Any other notations
are same as in Fig. 1.

settings as in the first comparison but without the PE pro-
cess. We use this method to examine the signal-to-noise ratio
of state–parameter covariance in different SE settings. Re-
sults find that the projection of the observational increment
onto the parameter can be easily interrupted under partial SE
conditions. In the third kind, we changed the model structure
from two-way coupling to one-way coupling, allowing the
ocean state to vary forced by the atmosphere without feed-
back to the chaotic atmosphere. The PE results are better with
higher periodic and less chaotic states.

According to all these comparisons, first, we found that
due to the interaction of multiple timescales in our concep-
tual coupled model, the fast-varying component is the ma-
jor source for producing an inaccurate state–parameter co-
variance in the system. Enhancing the estimation accuracy
of high-frequency states that interact with the parameter is
the most important factor to maintain a signal-dominated re-
lationship between the parameter being estimated and model
states, and allows for successful coupled model parameter es-
timation. Second, the chaotic-to-periodic ratio (CPR) of the
model state that closely associates with the parameter being
estimated determines the required state estimation accuracy.
Given limited observational resources, in the future when we
work with a realistic model and observing system, the CPR
shall be first investigated to increase the opportunities of hav-
ing successful parameter estimation.

Given the fact that observations are always imperfect, this
conceptual coupled model study tries to provide some gen-
eral guidelines for CGCM PE application with the real ob-
serving system. However, the results have the following lim-
itations:

1. The conceptual coupled model assumes that only the
atmosphere is a chaotic uncertainty source. In the real
world, this is unnecessarily true (nonlinearity produced
by smaller-scale eddies in the ocean could be the part of
chaotic uncertainty sources too, for instance).

2. The atmosphere–ocean interaction is idealized in the
conceptual model. In the real world, the air–sea cou-
pling could be complex as it is highly geographically
dependent.

3. The twin experiment assumes that except for the param-
eters to be estimated, the model “dynamical core” and
“physics” are perfect and consistent with the observa-
tion. In the real world, the CGCM is biased from the
observations.

All these aspects still need to be addressed before coupled
model PE is applied to a CGCM with the real observing sys-
tem.

How the accuracy of state estimation impacts on the cou-
pled model parameter estimation is an interesting and chal-
lenging research topic. The spatial and temporal dependence
of atmospheric and oceanic circulations could further com-
plicate the issue. For example, the Kuroshio meander in
the south of Japan is very different to the Kuroshio mean-
der across the Luzon Strait. The Kuroshio across the Luzon
Strait is easily interrupted by the monsoon, but the mean-
der in the south of Japan is a self-sustained dynamic system
having multiple equilibria with non-periodic state changes
(Taft, 1972; Yu et al., 2013); the uncertainty of the latter
comes from the accumulation of the negative vorticities in the
ocean. Further, we have already known that the method on a
particular frequency can increase the opportunity of success.
When such a real problem is addressed through the PE with a
CGCM, we may need to make efforts on both adaptive mea-
surements and spectral separation. The PE method shall be
improved to perform separately at different timescales. How
to speed up the convergent rate in the coupled model PE pro-
cess is also an important issue. All of these require further
research work in order to be clarified.

5 Data availability

We use wavelet analysis to exhibit the CPR of
different states. Some related wavelet methods
and additional useful examples are available at
www.glaciology.net/wavelet-coherence (Grinsted et al.,
2004). The source code of the wavelet toolbox can be down-
loaded at www.mathworks.com/matlabcentral/fileexchange/
47985-cross-wavelet-and-wavelet-coherence?download=
true.
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Appendix A: One-way coupling model

A suitable scope of parameter values that maintain the model
character is an important precondition for successful PE. For
example, in Eq. (1) when a2 is lower than 20, the varia-
tion of x2 becomes periodic and loses the chaotic nature.
When the values of the parameter of some ensemble mem-
bers are numerically out of bound, different ensemble mem-
bers exhibit different dynamic performance (some of them
are chaotic and the rest are periodic) and the state–parameter
covariance computed from the ensemble becomes unreason-
able and PE must fail. In a2 PE experiments, the values are
bounded within 24–32 where nonlinearity and characteristic
variability of the model is maintained. For the purpose of ma-
nipulating the signal w or η, to make them become more pe-
riodic than chaotic, we changed the parameter Ss to magnify
the amplitude of the cosine term that directly forces w. This
causes the value ofw to grow bigger according to different Ss
settings. At the same time, the original two-way coupling has
to be changed to one-way coupling by removing the w in the
x2 equation, which interacts with a2 in the Lorenz equation,
for maintaining the ability of producing the chaotic signal.
The reference x2 equation after the modification is

ẋ2 =−x1x3+ (1+ c1)a2x1− x2. (A1)

Therefore, when using Eq. (A1), the Lorenz atmosphere
cannot feel the variation of the ocean. The strength of the
chaotic forcing remains the same in all cases with different
Ss settings, and because the Lorenz atmosphere runs inde-
pendently, there is no need to set scope limits of the oceanic
parameters Ss , c2 and c6 for securing the chaotic character of
the system under this circumstance. The oceanic parameters
can be perturbed much larger than in the two-way coupled
cases.

Appendix B: Definition of CPR

A chaotic nature naturally lowers predictability of the signal.
The chaotic-to-periodic ratio (CPR) is defined to measure the
chaotic degree of a system within a particular period band as

CPR=
1

T2− T1

T2∫
T1

SD{log2[P(T )+ 1]}dT , (B1)

where P is the wavelet power spectrum of the selected state
variable on the period of T , and SD denotes the standard de-
viation (of the base-2 logarithm of P performed along a time
window, plus one to ensure the positive definite function for
the logarithm result). The wavelet transformation is able to
identify period components simultaneously with their loca-
tion and time. The CPR is a positive definite indicator. Its
value is 0 for a pure periodic signal.

Appendix C: PE method on a particular frequency band

Previous studies have shown that applying the PE with an av-
eraged covariance in a particular time window can increase
the signal-to-noise ratio (Lu et al., 2015, Barth et al., 2015).
In our case, it can also effectively increase the CPR of the
state variable. Here, we propose an alternative method that
has a similar effect to an averaged covariance but is much
easier to be implemented. This method applies PE on a par-
ticular frequency. The method succeeds in enhancing the
CPR by using a designed filter on both the observations and
the simulated ensemble results, and it can allow information
focusing on a particular frequency more accurately than us-
ing the averaging method.

In this study, for the η-to-c6 PE case with Ss = 250, the
periodic signal produced by the cosine function has a period
of 10 TUs (1000 time steps, defined by Spd in Eq. 1; also see
Fig. 10) and the chaotic signal is much slower than the peri-
odic signal. In other words, the signal-to-noise ratio of η is
strongest on the period of 10 TUs. Therefore, we designed
a Butterworth high-pass filter (BF) with a frequency pass
band equal to and larger than Fs/1000 (Fs is the frequency
of sampling) to help the PE of η-to-c6. The parameter update
interval in the new PE method is identical to the standard
full-frequency PE case, but for each update step, before they
are applied to Eqs. (2) and (3), the observation and simulated
ensemble results are filtered by the following BF process:

old:1yoi = PE(yo,ypi )

new:1yoi = PE
[
Filter(yo), Filter(ypi )

]
,

(i = 1∼N,N is the ensemble size), (C1)

where yo is the observation and ypi represents the simulated
ensemble results. The BF is applied within a 5000-step (or
more) moving window. It means that on each PE step, the
last 5000 observations and the simulated ensemble results
in the same window are transformed through the same BF
to produce new observations (hobs) and new simulated re-
sults (hens) on the particular frequency. Then, the new 1yoi
is computed from the hobs and the hens, and it is used with
the covariance to determine the adjustment of the parameter.
This new method can be used for different frequency bands
(low pass, high pass or band pass), and it succeeds in improv-
ing the PE performance in our one-way coupling experiment
for the η-to-c6 PE (Fig. 12b).
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