Articles | Volume 24, issue 1
https://doi.org/10.5194/npg-24-101-2017
https://doi.org/10.5194/npg-24-101-2017
Research article
 | 
22 Feb 2017
Research article |  | 22 Feb 2017

Conditional nonlinear optimal perturbations based on the particle swarm optimization and their applications to the predictability problems

Qin Zheng, Zubin Yang, Jianxin Sha, and Jun Yan

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Banks, A., Vincent, J., and Anyakoha, C.: A review of particle swarm optimization. Part I: background and development, Nat. Comput., 6, 467–484, https://doi.org/10.1007/s11047-007-9049-5, 2007.
Banks, A., Vincent, J., and Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications, Nat. Comput., 7, 109–124, https://doi.org/10.1007/s11047-007-9050-z, 2008.
Birgin, E. G., Martinez, J. M., and Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optimiz., 10, 1196–1211, 2000.
Borges, M. D and Hartmann, D. L.: Barotropic Instability and Optimal Perturbations of Observed Nonzonal Flows, J. Atmos. Sci., 49, 335–353, 1992.
Buizza, R. and Palmer, T. N.: The Singular-Vector Structure of the Atmospheric Global Circulation, J. Atmos. Sci., 52, 1434–1456, 1995.
Download
Short summary
When the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model on the prediction variable will lead to failure of the ADJ-CNOP method; when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making false estimations of the lower bound of maximum predictable time.