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Abstract. In predictability problem research, the conditional
nonlinear optimal perturbation (CNOP) describes the initial
perturbation that satisfies a certain constraint condition and
causes the largest prediction error at the prediction time. The
CNOP has been successfully applied in estimation of the
lower bound of maximum predictable time (LBMPT). Gen-
erally, CNOPs are calculated by a gradient descent algorithm
based on the adjoint model, which is called ADJ-CNOP. This
study, through the two-dimensional Ikeda model, investigates
the impacts of the nonlinearity on ADJ-CNOP and the corre-
sponding precision problems when using ADJ-CNOP to es-
timate the LBMPT. Our conclusions are that (1) when the
initial perturbation is large or the prediction time is long, the
strong nonlinearity of the dynamical model in the prediction
variable will lead to failure of the ADJ-CNOP method, and
(2) when the objective function has multiple extreme val-
ues, ADJ-CNOP has a large probability of producing local
CNOPs, hence making a false estimation of the LBMPT. Fur-
thermore, the particle swarm optimization (PSO) algorithm,
one kind of intelligent algorithm, is introduced to solve this
problem. The method using PSO to compute CNOP is called
PSO-CNOP. The results of numerical experiments show that
even with a large initial perturbation and long prediction
time, or when the objective function has multiple extreme
values, PSO-CNOP can always obtain the global CNOP.
Since the PSO algorithm is a heuristic search algorithm based
on the population, it can overcome the impact of nonlinearity
and the disturbance from multiple extremes of the objective
function. In addition, to check the estimation accuracy of the
LBMPT presented by PSO-CNOP and ADJ-CNOP, we par-

tition the constraint domain of initial perturbations into suf-
ficiently fine grid meshes and take the LBMPT obtained by
the filtering method as a benchmark. The result shows that
the estimation presented by PSO-CNOP is closer to the true
value than the one by ADJ-CNOP with the forecast time in-
creasing.

1 Introduction

Weather and climate predictability problems are attractive
and significant in atmospheric and oceanic sciences. The goal
of studying predictability problems is to investigate and un-
derstand the reasons for and mechanisms of the prediction
uncertainty. Early in 1975, Lorenz divided the predictability
problem into two types based on the consideration that pre-
diction uncertainties were mainly caused by the initial and
model errors. The first type of predictability problem is con-
cerned with the uncertainty in the forecast results induced by
initial errors, and the second type deals with the uncertainty
caused by model errors. He further introduced the singular
vector (SV) into the predictability problem study. The lead-
ing singular vector is the initial perturbation with the greatest
linear growth, and, accordingly, can be used to estimate the
evolution of initial errors in the tangent linear regime during
the course of a forecast (Buizza and Palmer, 1995; Lacarra
and Talagrand, 1988; Farrell, 1990; Borges and Hartmann,
1992; Kalnay, 2003). Since the atmospheric and oceanic
movement is a nonlinear physical process, an SV based on
linear theory cannot effectively express the procedure. This
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limits its applications to the predictability problems (Mu and
Duan, 2003). To this end, Mu et al. (2003) presented the
conditional nonlinear optimal perturbation (CNOP) method.
CNOP refers to the initial perturbation that satisfies a certain
constraint condition and has the maximum nonlinear evolu-
tion at the prediction time. Therefore, it stands for the initial
uncertainty which leads to the largest prediction error. CNOP
has been widely applied to weather and climate predictability
studies (Duan et al., 2004, 2009; Mu et al., 2007a, b, 2009;
Terwisscha and Dijkstra, 2008; Yu et al., 2012; Wang et al.,
2012, 2013). Riviere et al. (2010) used an extension of the
CNOP approach, i.e., the nonlinear singular vectors, to esti-
mate the predictability of atmospheric moisture processes so
as to reveal the effects of nonlinear processes.

Based on actual demands, Mu et al. (2002) separated the
predictability problem into three sub-problems, i.e., the prob-
lem of the LBMPT, the problem of the upper bound of maxi-
mum prediction error, and the problem of the lower bound of
maximum allowable initial error and parameter error. Duan
and Luo (2010) formulated these three problems into three
constrained nonlinear optimization problems. Meanwhile,
they used the CNOP method to find the solutions of the three
sub-problems.

Capturing CNOPs is a kind of constraint optimization
problem, and optimization algorithms commonly used in
solving CNOPs are based on the gradient descent method,
including the spectral projected gradient 2 (SPG2; Brigin et
al., 2000), sequential quadratic programming (SQP; Powell,
1982), and limited memory BFGS (L-BFGS; Liu and No-
cedal, 1989). Among these algorithms, the gradient informa-
tion is always provided by the backward integral of the corre-
sponding adjoint model of the prediction model (Duan et al.,
2004, 2008; Mu and Zhang, 2006; Mu et al., 2009; Jiang and
Wang, 2010; Yu et al., 2012; Wang et al., 2012, 2013). But
the optimal algorithms based on gradient information involve
the forward integral of the tangent model and backward in-
tegration of the adjoint model. It might cause the following
two problems: (1) for the numerical prediction model with
complex physical processes, the validity of the tangent linear
approximation cannot be guaranteed when the forecast pe-
riod is long; (2) for the actual prediction model, it is quite
difficult and time consuming to develop the adjoint model.
Recently, Zheng et al. (2012, 2014) attempted to apply ge-
netic algorithms (GAs) to capture CNOPs of the dynami-
cal model containing discontinuous “on–off” switches. They
concluded that GAs, with proper genetic operator configu-
ration, can overcome the non-smooth influences and obtain
the global CNOP with high probability. Thus, in non-smooth
cases, using GAs to solve predictability problems is more ef-
fective than using the conventional optimization algorithm.

The particle swarm optimization (PSO) algorithm is
an intelligent algorithm proposed by Kennedy and Eber-
hart (1995) which imitated the process of bird foraging. In
the PSO algorithm, each particle, as a vector in solution
space, represents a potential solution of the optimal prob-

lem. Compared to the gradient descent algorithm based on
the adjoint model, the PSO algorithm has better effective-
ness in searching the global optimal solution for nonlinear
and non-smooth optimal problems; PSO does not require a
gradient of the objective function. PSO is similar to the GA
in the sense that they are both population-based search ap-
proaches and that they both depend on information sharing
among their population members to enhance their search pro-
cesses using a combination of deterministic and probabilistic
rules (Hassan et al., 2005). PSO has the same effectiveness
as the GA but with significantly better computational effi-
ciency; it has memory and constructive cooperation between
particles (Fang and Zheng, 2009). This paper tries to use PSO
to calculate the CNOP of the forecast model, and obtains a
highly precise estimation of the lower bound of maximum
predictable time.

The Ikeda model was originally proposed by Ikeda (1979)
as a model describing light going across a nonlinear opti-
cal resonator. The Ikeda model has strong nonlinearity, and
the two-dimensional difference scheme is its most common
form. Li et al. (2016) investigated the stability of solutions
of the Ikeda model and tested the dependence of the solu-
tions on the model parameter. In addition, they provided the
solution description of various shapes corresponding to pa-
rameter values of different regions. This paper takes the two-
dimensional Ikeda model as the prediction model to reveal
how the nonlinearity impacts the precision when estimat-
ing the LBMPT based on the ADJ-CNOP method. A new
method, PSO-CNOP, is presented to solve this problem.

This paper is organized as follows: Sect. 2 is devoted to de-
scribing the three predictability sub-problems, the definition
of CNOP and the two-dimensional Ikeda model. Section 3
provides the knowledge about the particle swarm optimiza-
tion (PSO) algorithm. In Sect. 4, the performances of ADJ-
CNOP and PSO-CNOP are compared when solving CNOPs
through numerical experiments. The impacts on the estima-
tion precision of the lower bound of maximum predictable
time are also demonstrated in this section. The conclusion
and discussion are presented in Sect. 5.

2 Related conceptions and the forecast model

The three predictability sub-problems, the definition of
CNOP and the two-dimensional Ikeda model are briefly de-
scribed as follows, and more detailed introductions can be
found in Mu et al. (2002, 2003) and Li and Zheng (2016).

2.1 Three sub-problems of the predictability problem

The three predictability sub-problems associated with the
first kind of predictability problem are introduced, and the
forecast model is supposed to be perfect in the following.
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Problem 1: the lower bound of maximum predictable
time (LBMPT)

Assuming that there is an error in the initial condition (IC)
of the forecast model, it will lead to a prediction error when
integrating forward the model from the IC to predict the at-
mospheric or oceanic states in the future.

Let u0 be the IC, ut
T the true state at time T , and MT the

nonlinear propagator of the numerical forecast model from 0
to time T ; then, under the assumption of the perfect model,
ut
T =MT (ut

0), where ut
0 is the true state at the initial time.

With a given prediction precision ε > 0, the maximum pre-
dictable time Tε is defined as follows:

Tε =max{τ | ||MT (u0)−ut
T ||2 ≤ ε, 0≤ T ≤ τ }. (1)

Since the true value ut
T cannot be obtained exactly, it is im-

possible to get Tε by solving the nonlinear optimization prob-
lem (1). Inspired by the fact that the IC u0 is often provided
by an analysis field, and the associated analysis error can
generally be controlled in a specified range, Mu et al. (2002)
reduced the maximum predictable time problem to the fol-
lowing LBMPT problem.

If we have an estimation of the uncertainty in the IC as
follows,∥∥u0−ut

0
∥∥≤ σ, (2)

then the LBMPT Tl is defined as

Tl = min
||δu0||≤σ

{Tu0,δu0 |Tu0,δu0 =maxτ,

||M t (u0+ δu0)−M t (u0) || ≤ ε, 0≤ t ≤ τ }, (3)

where σ > 0 denotes the accuracy of the IC in terms of the
norm || · ||, and δu0 is an initial perturbation superposed on
the IC. According to Eq. (2), the true initial state is within
the constraint region; we have

Tl ≤ Tε.

Problem 2: the upper bound of maximum prediction
error

When a forecast is produced from an incorrect initial IC u0,
the prediction error at the prediction time T is

E = ||MT (u0)−ut
T ||. (4)

Similarly to problem 1, since the true value ut
T cannot be ob-

tained precisely, Mu et al. (2002) instead introduced the up-
per bound of the maximum prediction error within the given
initial error limitation as follows:

Eu = max
||δu0||≤σ

||MT (u0+ δu0)−MT (u0) ||. (5)

Note that ut
0 satisfies Eq. (2) and ut

T =MT (ut
0) under the

assumption of perfect model; we have

E ≤ Eu.

Problem 3: the lower bound of maximum allowable
initial error

Given the prediction time T > 0 and prediction precision ε >
0, the maximum allowable initial error is

σmax =max{σ | ||MT (u0+ δu0)−ut
T || ≤ ε, ||δu0|| ≤ σ }. (6)

Similar to problems 1 and 2, the above problem was reduced
by Mu et al. (2002) to the following lower bound of maxi-
mum allowable initial error:

σmax =max{σ | ||MT (u0+ δu0)−MT (u0) || ≤ ε, ||δu0|| ≤ σ }. (7)

2.2 Conditional nonlinear optimal perturbation
(CNOP)

In consideration of the nonlinearity impacts, Mu et al. (2003)
introduced CNOPs into the study of predictability problems.
Suppose the atmospheric or oceanic motions can be de-
scribed by the following dynamic system:{
∂U
∂t
+F(U, t)= 0,

U|t=0 = U0,
(8)

where U(x, t)= (U1(x, t),U2(x, t), · · ·,Un(x, t))T is the ba-
sic state, which is an n-dimensional vector; the superscript
T represents the transpose, U0 is the initial basic state, and
x= (x1,x2, · · ·,xm)

T
∈�⊂Rm and t are the spatial and

temporal variables, respectively; t = 0 is the initial time; and
F is a nonlinear partial differential operator.

Suppose Mτ is the nonlinear transmission propagator
from the initial time t = 0 to the forecast time t = τ ; thus,
the state of model (8) at time τ is

U(x,τ )=Mτ (U0) . (9)

If u0 stands for the initial perturbation of the basic state U(t)
and uI (τ ) is the development of u0 at time τ , that is,

uI (τ )=Mτ (U0+u0)−Mτ (U0), (10)

then the initial perturbation u∗0 is called the conditional non-
linear optimal perturbation (CNOP) if and only if u∗0 is the
solution of the following optimization problem:

J
(
u∗0
)
= max

u0∈Bσ
||Mτ (U0+u0)−Mτ (U0) ||, (11)

where Bσ = {u0
∣∣u0 ∈Rn,‖u0‖ ≤ σ } is the constraint do-

main on the initial perturbation. In terms of the L2 norm,
Bσ is a ball with the center at the origin and the radius σ . In
addition, J is called the objective function in the context of
optimal control theory.
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Figure 1. Flow chart of solving the LBMPT.

2.3 Estimation of the LBMPT

Duan and Luo (2010) designed a numerical method to cal-
culate the LBMPT in their research of predictability (Fig. 1).
It should be noted that CNOPs stand for the initial uncer-
tainty in the given constrained domain which leads to the
largest prediction error. Therefore, the maximum prediction
error can be estimated by solving CNOPs.

In detail, for a given first guess value TG of the prediction
time, one can use a constraint nonlinear optimization algo-
rithm to capture the CNOP so as to estimate the maximum
prediction error ETG at time TG caused by the initial error in
a constraint domain Bσ .

If ETG >Em (Em stands for the allowable prediction er-
ror), we try to reduce the integral time step TG = TG−1T ,
where 1T is a certain constant, and calculate the maximum
prediction error at the reduced time. If ETG <Em, we will
increase the integral time step TG = TG+1T and calculate
the maximum prediction error at the new TG.

If TG satisfies the conditions ETG+1T >Em and
ETG−1T ≤ Em, then TG is considered the lower bound of
maximum predictable time which satisfies the prediction pre-
cision Em under the given initial error. The operation flow
chart is shown as Fig. 1.

2.4 The two-dimensional Ikeda model

The following two-dimensional Ikeda model is adopted as
the prediction model:{
x1(t + 1)= 1+µ(x1(t)cosθt − x2(t)sinθt )
x2(t + 1)= µ(x1(t)sinθt + x2(t)cosθt )

, (12)

θt = a−
b

1+ x1(t)2+ x2(t)2
, (13)

where 0≤ µ≤ 1, a = 0.4 and b = 6.
From the expression of the model we find that the trigono-

metric functions appear in Eq. (12), and Eq. (13) is a frac-

Figure 2. The distribution of solutions at the last 5000 steps when
µ= 0.83.

tion whose denominator includes two quadratic components.
Thus, the two-dimensional Ikeda model has fairly strong
nonlinearity (Li and Zheng, 2016). The solutions of the
model present different behaviors with the change in the
model parameter µ. When the parameter varies from 0 to
1, the numerical solutions change from a point attractor to
periodic solutions, then to chaos, and end up with a limit cy-
cle (Li and Zheng, 2016). The predictability problems are
always launching under chaos. According to the conclusions
given by Li and Zheng (2016), the model solution appeared
chaotic when µ ∈ [0.700,0.902]. Figure 2 shows the numer-
ical solution of the last 5000 steps in 10 000 integral steps,
while the initial value is set to (x0,y0)= (0.25,−0.325) and
the model parameter is µ= 0.83.

3 The particle swarm optimization (PSO) algorithm

The PSO algorithm has recently got more and more atten-
tion (Eberhart and Shi, 2001; Banks et al., 2007, 2008; Poli
et al., 2007). The PSO algorithm was originally proposed by
social psychologists Kennedy and Eberhart (1995). It sim-
ulates the collective behavior of birds foraging. Each parti-
cle represents a potential solution in the PSO algorithm, flies
with specific velocity, respectively, and adjusts its trajectories
according to the flying experiences of its own and the com-
panion’s, finally finding the optimal location in the solution
space. To avoid the particles rapidly flying out of the solv-
ing region and to improve the ability of PSO to search for a
global optimal solution, Shi and Eberhart (1998) introduced
the maximum velocity and the inertia weight into PSOs, so as
to restrain the particle’s behaviors in the searching process.
Clerc and Kennedy (2002) proposed a limiting factor for the
two acceleration coefficients after they analyzed theoretically
the convergence of PSO.

Nonlin. Processes Geophys., 24, 101–112, 2017 www.nonlin-processes-geophys.net/24/101/2017/



Q. Zheng et al.: Conditional nonlinear optimal perturbations 105

The basic PSO algorithm consists of three processes,
namely, generating particles’ positions and velocities, assess-
ing particles, and updating particles’ positions and velocities.

The mathematical description of the classic PSO al-
gorithm is as follows: in an n-dimensional search
space, each particle of PSO represents a potential
solution of the optimization problem. We denote M
the swarm size, Xi(k)= (xi 1(k),xi 2(k), · · ·,xi n(k)) and
Vi(k)= (vi1(k),vi2(k), · · ·,vi n(k)) the position and the ve-
locity of the ith particle at the kth generation, respec-
tively, Pi(k)= (pi 1(k),pi 2(k), · · ·,pi n(k)) the personal his-
torical best position of the ith particle found so far, and
Pg(k)=

(
pg 1(k),pg 2(k), · · ·,pg n(k)

)
the best position that

the whole swarm attained so far; then the particle i’s veloc-
ity and position in the next k+ 1 generation can be updated
according to the following formula:

vid(k+ 1)= wvid(k)+ c1r1 (pid(k)− xid(k))

+ c2r2
(
pgd(k)− xid(k)

)
, (14)

xid(k+ 1)= xid(k)+ vid(k+ 1), (15)

where i = 1,2, · · ·,M , d = 1,2, · · ·,n, c1 and c2 are the
acceleration coefficients, which make particles having the
ability to self-summarize and learn from excellent particles
among the group to approach their own and group historical
optimal points. r1 and r2 are two random numbers that are
subject to uniform distribution on the interval [0,1]. ω is the
inertia weight. It can be set as a fixed constant or a linear
reduction function with the increase in the evolutional gen-
erations. The flow chart of the PSO algorithm is shown as
Fig. 3.

When using a PSO to search CNOPs for the estimation of
the LBMPT, the prediction error at the specified forecast time
is the associated objective function J . The initial perturbation
δu, which is a two-dimensional vector in the search space in
our situation, is the optimization variable.

4 Numerical experiments and their results analyses

4.1 The numerical experiments solving CNOPs by
different optimization algorithms

In order to compare the performances of the ADJ-CNOP
and PSO-CNOP in solving CNOPs, the CNOPs yielded by
the filtering method are taken as the benchmark after fine-
dividing the constraint domain of initial perturbations. The
filtering method is implemented as follows. The correspond-
ing circumscribed square of a constraint region of the CNOP
is considered; four square meshes of a certain size are used
to discretize the circumscribed square. For any mesh point
outside the region, it is connected with the center of the re-
gion; the intersection point of this line with the boundary
of the region is obtained. Integrating the Ikeda model from
the initial basic state superimposed each of these intersection

Figure 3. The flow chart of the PSO algorithm.

points and, for the mesh points inside the region, the predic-
tion error caused by each initial error can be obtained. The
CNOP refers to the mesh point which leads to the largest
prediction error (Duan and Luo, 2010). Since the accuracy of
the CNOP generated by the filtering method depends on the
division size of the constraint region exclusively, the circum-
scribed squares of the constraint ball of CNOPs are separated
into 1001×1001 small quadrate patches with very small side
length 1.6402× 10−5 in numerical experiments. For a de-
tailed description of the operation of the filtering method, one
can refer to Duan and Luo (2010) and Zheng et al. (2012).

In the numerical experiments, the initial basic state of the
two-dimensional Ikeda model is (x0,y0)= (0.25,−0.325),
and the model parameter is µ= 0.83. The population size of
the PSO is M = 60, the maximum evolutional generation is
set to 200, inertia weight is ω = 0.729 and the accelerating
factors are C1 = 2.05 and C2 = 2.05. The norms measuring
IC errors and prediction errors are both the L2 norm, and the
radius σ of the constraint ball Bσ is 8.201× 10−3.

The particle swarm initialization scheme in PSO-CNOP is
as follows:

Xi = (xi,1(0),xi,2(0)) are random vectors obeying
a uniform distribution on Bσ .

Vi(0)=
(
vi,1(0),vi,2(0)

)
= Xi(0), i = 1,2, · · ·,M.

The first guess of the perturbation δu= (x0,y0) for ADJ-
CNOP is randomly picked from Bσ . The constrained opti-
mization algorithm used in ADJ-CNOP is the SPG2.

With the prediction time increasing, there would appear
simultaneously many CNOPs for the two-dimensional Ikeda
model because of the impact of the strong nonlinearity.
Hence, different forecast times are adopted to test the abil-
ity of ADJ-CNOP and PSO-CNOP to attack the nonlinearity
obstacles. For each forecast time, the numerical experiment
using ADJ-CNOP or PSO-CNOP to obtain CNOPs is con-
ducted 40 times, respectively; 40 CNOPs are clustered by the
fuzzy c-means clustering (FCM) method and the accuracy of
the CNOPs is statistically analyzed.
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Figure 4. The distributions of OFVs at the prediction times 61t (left) and 131t (right), in which dots a and b are the global and local
maximum points.

Table 1. Statistical analysis of CNOPs produced by different methods at 61t .

Method OFV CNOP Proportion

Filtering 3.7533×10−2 (−3.5066×10−3, 7.4131×10−3)
ADJ-CNOP 3.7533×10−2 (−3.5068×10−3, 7.4130×10−3) 47.5 %

2.3973×10−2 (2.9072×10−3, −7.6683×10−3) 52.5 %
PSO-CNOP 3.7533×10−2 (−3.5068×10−3, 7.4130×10−3) 100 %

The numerical experiment results show that when the inte-
gration time of the prediction model is short, the correspond-
ing objective function (Eq. 11) presents good behavior with
the change in the initial perturbation. It has only two extreme
values in the constraint ball of the initial perturbation. One is
the global maximum, and the extreme point corresponds to
the global CNOP. The other is the local maximum, and the
extreme point is a local CNOP. Figure 4 shows the distribu-
tion of objective function values (OFVs) when the prediction
times are on 6th unit time steps, i.e., 61t (left) and 131t
(right), respectively, in which the global maximum point is
located at point a and point b is the position of the local max-
imum.

Tables 1 and 2 demonstrate the statistical analysis results
of the CNOPs produced by ADJ-CNOP and PSO-CNOP
when capturing CNOPs 40 times at the forecast times 61t
and 131t , and the related results generated by the filtering
method. Through the FCM method, we find that CNOPs ob-
tained by the ADJ-CNOP method are divided into two cate-
gories: one is related to the global CNOP that accounted for
47.5 % (70 %) for the forecast time 61t (131t) of the total;
the other is the local CNOP that makes up 52.5 % (30 %) of
the total. However, 40 CNOPs captured by PSO-CNOP are
completely the same, and they are coincident with the CNOP
yielded by the filtering method.

From Tables 1 and 2, we can see that although the pre-
diction time is short, the ADJ-CNOP method still has a large
probability of capturing local CNOPs, while PSO-CNOP can
always catch the global CNOP. Actually, we can draw the
same conclusion with the prediction time being increased to
131t .

When the forecast time increases to 141t , the 40 CNOPs
yielded by ADJ-CNOP and PSO-CNOP are demonstrated in
the following Fig. 5.

Figure 6 indicates all CNOPs generated by the filtering
method with fine division of the constraint domain of ini-
tial perturbations (the circumscribed squares of the constraint
ball of CNOPs are separated into 1001×1001 small quadrate
patches with very small side length 1.6402× 10−5).

Figure 6 shows that when the prediction time reaches
141t , there exist many global CNOPs, and all of them are
located in a line. Based on this, we find that ADJ-CNOP
not only gets global or local CNOPs, but also captures false
CNOPs at the prediction time 141t , since no matter how
small an area we take around one of these “CNOPs”, there
always exists one point whose objective function value is
larger than the objective function value of the “CNOP”. Ac-
cording to the definition of CNOPs, these “CNOPs” are not
true CNOPs. Hence, we call them false CNOPs.

Nonlin. Processes Geophys., 24, 101–112, 2017 www.nonlin-processes-geophys.net/24/101/2017/
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Table 2. Same as Table 1, except at 131t .

Method OFV CNOP Proportion

Filtering 1.5301 (−3.4679×10−3, 7.4313×10−3)
ADJ-CNOP 1.5301 (−3.4682×10−3, 7.4311×10−3) 70 %

0.8516 (−1.9285×10−3, −7.9706×10−3) 30 %
PSO-CNOP 1.5301 (−3.4682×10−3, 7.4311×10−3) 100 %

Figure 5. The distributions of OFVs at the prediction time 141t , where the dots in the left (right) panel are the CNOPs produced by
ADJ-CNOP (PSO-CNOP).

Figure 6. The distributions of OFVs at the prediction time 141t ,
where dots are the CNOPs produced by the filtering method.

Additionally, comparing the right panel of Fig. 5 with
Fig. 6, it is easy to know that although many CNOPs are pro-
duced by PSO-CNOP in 40 repeated numerical experiments,

all of the CNOP points are located on the same line as the
one presented by the filtering method. Therefore, the CNOPs
yielded by PSO-CNOP are all global.

When we keep extending the prediction time, the behavior
of the objective function will get much worse, and more ex-
treme points will appear. In order to verify the performance
of the PSO-CONP method in solving CNOPs in the strong
nonlinear case, the mean value and variance of the OFVs of
the 40 CNOPs at different forecast times are calculated and
compared with the maximal OFV (MOFV) obtained by the
filtering method.

According to Table 3, the OFVs of 40 CNOPs calculated
by the PSO-CNOP method at each forecast time are almost
consistent with the maximum of the objective function got-
ten by the filtering method at the same forecast time. There-
fore, PSO-CNOP is still capable of solving global CNOPs
of the two-dimensional Ikeda model for long forecast times.
Figure 7 demonstrates the distributions of OFVs at the pre-
diction times 151t , 181t and 221t , as well as the locations
of all CNOPs generated by PSO-CNOP.

From the upper two panels of Fig. 7, we can see clearly
that the CNOPs are all located in the maximal OFV region,
which indicates that all of the CNOPs captured by the PSO-
CNOP method are global. Because of the complexity of the

www.nonlin-processes-geophys.net/24/101/2017/ Nonlin. Processes Geophys., 24, 101–112, 2017
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Figure 7. The distribution of OFVs at the prediction times 151t (the left of the upper panel), 181t (the right of the upper panel) and 221t
(the lower panel), where dots denote CNOPs captured by PSO-CNOP.

Table 3. The precision analysis of the CNOPs produced by PSO-
CNOP at different forecast times.

Prediction MOFV of the CFV of PSO-CNOP

time filtering method Mean value Variance

151t 1.6106 1.6106 3.3142×10−16

161t 1.3052 1.3052 8.6189×10−14

171t 1.6521 1.6521 2.0092×10−16

181t 1.7807 1.7807 7.6313×10−17

191t 1.5401 1.5401 1.7300×10−16

201t 1.3482 1.3482 8.8314×10−10

211t 1.6980 1.6980 3.3546×10−10

221t 1.6602 1.6593 4.6798×10−07

distributions of OFVs at the prediction time 221t , it cannot
be confirmed directly from the lower panel of Fig. 7 whether
or not the CNOPs are global. Therefore, we select one CNOP
randomly from each cluster of the 40 CNOPs and zoom into
the graph nearby the CNOP point to look at the OFV distri-

bution. Figure 8 gives one of the results, from which we can
see that the CNOP is still located in the maximal OFV area.

With further increasing of the prediction time, the strong
nonlinearity deteriorates the behavior of the objective func-
tion seriously. In this situation, a predictability study based
on the CNOP method becomes no longer meaningful because
the CNOPs are too dispersive.

4.2 Comparison between PSO-CNOP and GA-CNOP

In the following, the GA is adopted to capture CNOPs of the
two-dimensional Ikeda model, and the results are compared
with the ones obtained by the PSO-CNOP. The method using
the GA to compute CNOP is called GA-CNOP. The relevant
operational flow chart of the GA is shown in Fig. 9.

The configuration of the genetic operators and the relevant
parameter are the same as in Zheng et al. (2014). A more
detailed description of the GA and numerical experiment
scheme of GA-CNOP can be found in Zheng et al. (2014).

The performances of PSO-CNOP and GA-CNOP in solv-
ing the CNOPs are tested for different population sizes; the
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Figure 8. Local distribution of the OFV at the prediction time 221t
nearby the CNOP point.

Figure 9. The flow chart of the GA.

results are statistically analyzed and presented in Tables 4
and 5.

It can clearly be seen from Tables 4 and 5 that the op-
timal population size of PSO-CNOP is about 15, but the
optimal population size of GA-CNOP is about 40. Further-
more, the computational times and CFV calculated, respec-
tively, by PSO-CNOP with a population size of 15 and GA-
CNOP with a population size of 40, are compared with that of
ADJ-CNOP. Table 6 illustrates the mean CFV and the aver-
age computation time obtained by different methods in their
40 numerical experiments.

Table 4. Mean CFV of 40 CNOPs produced by PSO-CNOP for
every given population size.

Population size

Prediction 5 10 15 30 45 60
time

131t 1.5301 1.5301 1.5301 1.5301 1.5301 1.5301
191t 1.5209 1.5396 1.5401 1.5401 1.5401 1.5401

Table 5. Same as Table 4, except that 40 CNOPs are produced by
GA-CNOP.

Population size

Prediction 16 26 36 40 50 60
time

131t 1.5299 1.5300 1.5300 1.5300 1.5300 1.5300
191t 1.5019 1.5295 1.5357 1.5400 1.5400 1.5400

From the numerical results we can see that the CFV of
GA-CNOP is almost the same as PSO-CNOP; the GA is an
effective optimal algorithm to obtain the optimal solution.
However, the GA is more time consuming than PSO. At the
same time, the computational time of PSO-CNOP and GA-
CNOP is much greater than ADJ-CNOP, which is also the
difference between stochastic searching algorithms and de-
terministic searching algorithms. Fortunately, in intelligent
optimization algorithms, the parallel computation can be eas-
ily realized. The operators of different individuals in one gen-
eration are independent, and can be done in different CPUs,
which thereby can take full advantage of fast developed par-
allel computation technology (Fang et al., 2009).

4.3 Estimation of the LBMPT

The CNOP method can be adopted to do a similar study on
other two predictability sub-problems. Here we only focus
on the estimation of the LBMPT to discuss the influence of
nonlinearity. To demonstrate the effectiveness of PSO-CNOP
in solving this problem, the filtering method, ADJ-CNOP
and PSO-CNOP are used in the numerical experiments, re-
spectively. In order to compare the estimation accuracy of
the LBMPT generated by ADJ-CNOP and PSO-CNOP, the
LBMPT computed by the filtering method with a fine divi-
sion is taken as the benchmark. Different allowable predic-
tion errors Em, 0.5, 0.8, 1.1, 1.4, and 1.7, and a different
constrained radius δ of initial perturbations, 0.01, 0.02, 0.03,
0.04, and 0.05, are employed to verify the performance of the
ADJ-CNOP and PSO-CNOP methods. The lattice spacing of
the filtering method is 0.001. Tables 7, 8 and 9 illustrate the
LBMPTs computed by the filtering method, PSO-CNOP and
ADJ-CNOP, respectively.

Comparing Table 7 with Table 8, we find that the LBMPTs
estimated by the PSO-CNOP approach are completely the
same as the ones computed by the filtering method. It is
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Table 6. Analysis of CFV and average computational time by different methods.

Prediction time 61t 131t

Method Mean CFV Time (s) Mean CFV Time (s)

ADJ-CNOP 3.0100×10−2 5.0000×10−4 1.3944 6.7500×10−4

PSO-CNOP 3.7533×10−2 0.0032 1.5301 0.0058
GA-CNOP 3.7533×10−2 0.0299 1.5300 0.0358

Table 7. The LBMPT computed by the filtering method.

Em δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

0.5 9 7 7 6 6
0.8 10 9 7 7 6
1.1 10 10 9 7 7
1.4 10 10 9 7 7
1.7 12 12 12 11 10

Table 8. The LBMPT estimated by the PSO-CNOP method.

Em δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

0.5 9 7 7 6 6
0.8 10 9 7 7 6
1.1 10 10 9 7 7
1.4 10 10 9 7 7
1.7 12 12 12 11 10

worth mentioning that with the prediction time extending, al-
though the objective functions have multiple extreme values
and PSO-CNOP would produce different CNOPs in differ-
ent numerical experiments, each one of these CNOPs can be
used to estimate the maximum prediction error, and the final
LBMPTs obtained are the same since they are all global.

The bold numbers in Table 9 are the LBMPTs that are dif-
ferent from the ones computed by the filtering method. The
LBMPTs yielded by the ADJ-CNOP method are generally
larger. The reason is that the CNOP given by the ADJ-CNOP
method is often local, even false. Therefore the estimation of
the maximum prediction error based on the CNOP is usually
questionable and untrusted.

To investigate the probability that the ADJ-CNOP method
generates incorrect LBMPTs, we operate the numerical ex-
periment shown in Table 9 40 times with various first guesses
of the initial perturbations. The statistical analysis results are
given in Table 10.

From Table 10, we can see that the ratio of incorrect
LBMPTs based on ADJ-CNOP is high. The highest one even
reaches 95 % when δ = 0.02 and Em = 1.7. This problem is
serious for real weather forecasts since it can mislead fore-
casts with a large probability.

Table 9. The LBMPT estimated by the ADJ-CNOP method.

Em δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

0.5 9 7 7 7 7
0.8 10 9 8 7 6
1.1 10 11 9 9 8
1.4 10 10 10 9 9
1.7 12 13 12 11 10

Table 10. Incorrect ratio in all 40 LBMPTs yielded by ADJ-CNOP.

Em δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 δ = 0.05

0.5 15 % 40 % 32.5 % 52.5 % 45 %
0.8 22.5 % 55 % 35 % 42.5 % 50 %
1.1 7.5 % 42.5 % 35 % 42.5 % 57.5 %
1.4 25 % 32.5 % 35 % 52.5 % 50 %
1.7 12.5 % 95 % 30 % 60 % 60 %

5 Conclusion and discussion

Since the two-dimensional Ikeda model has strong nonlin-
earity, when we utilize the ADJ-CNOP method to capture
CNOPs, not only global or local CNOPs, but even false
CNOPs, are obtained. The reason for this is that in the case
of strong nonlinearity, the gradient provided by the adjoint
model is incorrect. When the traditional optimization algo-
rithm uses a wrong descent direction to search for extreme
values of the objective function, false CNOPs are presented.

PSO is a heuristic search algorithm based on population.
It can overcome the nonlinear influences and produce global
CNOPs with high probability. In addition, the operation of
the PSO algorithm is simple. This study applies the PSO al-
gorithm to capture the CNOP of the two-dimensional Ikeda
model. Numerical experiment results with different forecast
times demonstrate that although the objective function has
awful behavior and multiple extreme values, PSO-CNOP can
still capture global CNOPs.

Furthermore, precision problems of using ADJ-CNOP to
estimate the LBMPT are investigated. Results show that
when the objective function has multiple extreme values,
ADJ-CNOP has a large probability of producing the local
CNOP, hence inducing false estimation of the LBMPT. As
PSO-CNOP can always yield global CNOPs, therefore, the
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estimation of the LBMPT presented by PSO-CNOP is pre-
cise. It is consistent with the one yielded by the filtering
method with fine division.

As we know, our numerical experiments focus on two-
dimensional prediction models only. When considering high-
dimensional and more complex models, whether or not the
classic PSO algorithm used in this study can overcome the
influence of high dimensions and the computation time meet
the real requirement is still unknown. The problems of the
curse of dimensionality and multimodal function are a big
challenge for almost all intelligent optimization algorithms,
also PSO. Whether it can be effective in higher-dimensional
and more complicated models deserves further research. In
short, the PSO-CNOP approach is an alternative method to
study predictability problems in the case of strong nonlinear-
ity.
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