Articles | Volume 23, issue 3
Nonlin. Processes Geophys., 23, 137–141, 2016
https://doi.org/10.5194/npg-23-137-2016
Nonlin. Processes Geophys., 23, 137–141, 2016
https://doi.org/10.5194/npg-23-137-2016

Brief communication 10 Jun 2016

Brief communication | 10 Jun 2016

Brief Communication: Breeding vectors in the phase space reconstructed from time series data

Erin Lynch et al.

Related authors

Exploiting Aeolus Level-2B Winds to Better Characterize Atmospheric Motion Vector Bias and Uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-277,https://doi.org/10.5194/amt-2021-277, 2021
Preprint under review for AMT
Short summary
Estimating surface carbon fluxes based on a local ensemble transform Kalman filter with a short assimilation window and a long observation window: an observing system simulation experiment test in GEOS-Chem 10.1
Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia
Geosci. Model Dev., 12, 2899–2914, https://doi.org/10.5194/gmd-12-2899-2019,https://doi.org/10.5194/gmd-12-2899-2019, 2019
Short summary
Accelerating assimilation development for new observing systems using EFSO
Guo-Yuan Lien, Daisuke Hotta, Eugenia Kalnay, Takemasa Miyoshi, and Tse-Chun Chen
Nonlin. Processes Geophys., 25, 129–143, https://doi.org/10.5194/npg-25-129-2018,https://doi.org/10.5194/npg-25-129-2018, 2018
Short summary
Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea
Daniel E. Kaufman, Marjorie A. M. Friedrichs, John C. P. Hemmings, and Walker O. Smith Jr.
Biogeosciences, 15, 73–90, https://doi.org/10.5194/bg-15-73-2018,https://doi.org/10.5194/bg-15-73-2018, 2018
Short summary
Estimating Surface Carbon Fluxes Based on a Local Ensemble Transform Kalman Filter with a Short Assimilation Window and a Long Observation Window
Yun Liu, Eugenia Kalnay, Ning Zeng, Ghassem Asrar, Zhaohui Chen, and Binghao Jia
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-888,https://doi.org/10.5194/acp-2017-888, 2017
Preprint withdrawn
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
The blessing of dimensionality for the analysis of climate data
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021,https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021,https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary
Producing realistic climate data with generative adversarial networks
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021,https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Identification of droughts and heatwaves in Germany with regional climate networks
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021,https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021

Cited articles

Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and Tsimring, L. S.: The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65, 1331–1392, 1993.
Chen, J. and Sharma, A. S.: Modeling and prediction of the magnetospheric dynamics during intense geospace storms, J. Geophys. Res., 111, A04209, https://doi.org/10.1029/2005JA011359, 2006.
Evans, E., Bhatti, N., Kinney, J., Pann, L., Pena, M., Yang, S. C., Kalnay, E., and Hansen, J.: RISE undergraduates find that regime changes in Lorenz's Model are predictable, B. Am. Meteorol. Soc., 85, 521–524, 2004.
Hoffman, M. J., Kalnay, E., Carton, J. A., and Yang, S.-C.: Use of breeding to detect and explain instabilities in the global ocean, Geophys. Res. Lett., 36, L12608, https://doi.org/10.1029/2009GL037729, 2009.
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
Download
Short summary
In this article, bred vectors are computed from a single time series data using time-delay embedding, with a new technique, nearest-neighbor breeding. Since the dynamical properties of the nearest-neighbor bred vectors are shown to be similar to bred vectors computed using evolution equations, this provides a new and novel way to model and predict sudden transitions in systems represented by time series data alone.