Articles | Volume 23, issue 3
https://doi.org/10.5194/npg-23-137-2016
https://doi.org/10.5194/npg-23-137-2016
Brief communication
 | 
10 Jun 2016
Brief communication |  | 10 Jun 2016

Brief Communication: Breeding vectors in the phase space reconstructed from time series data

Erin Lynch, Daniel Kaufman, A. Surjalal Sharma, Eugenia Kalnay, and Kayo Ide

Related authors

Review article: Towards strongly coupled ensemble data assimilation with additional improvements from machine learning
Eugenia Kalnay, Travis Sluka, Takuma Yoshida, Cheng Da, and Safa Mote
Nonlin. Processes Geophys., 30, 217–236, https://doi.org/10.5194/npg-30-217-2023,https://doi.org/10.5194/npg-30-217-2023, 2023
Short summary
Assimilating the dynamic spatial gradient of a bottom-up carbon flux estimation as a unique observation in COLA (v2.0)
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Qixiang Cai, and Pengfei Han
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-15,https://doi.org/10.5194/gmd-2023-15, 2023
Revised manuscript not accepted
Short summary
Applying prior correlations for ensemble-based spatial localization
Chu-Chun Chang and Eugenia Kalnay
Nonlin. Processes Geophys., 29, 317–327, https://doi.org/10.5194/npg-29-317-2022,https://doi.org/10.5194/npg-29-317-2022, 2022
Short summary
Improving the joint estimation of CO2 and surface carbon fluxes using a constrained ensemble Kalman filter in COLA (v1.0)
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Bo Wu, Qixiang Cai, Di Liu, and Pengfei Han
Geosci. Model Dev., 15, 5511–5528, https://doi.org/10.5194/gmd-15-5511-2022,https://doi.org/10.5194/gmd-15-5511-2022, 2022
Short summary
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022,https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and Tsimring, L. S.: The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65, 1331–1392, 1993.
Chen, J. and Sharma, A. S.: Modeling and prediction of the magnetospheric dynamics during intense geospace storms, J. Geophys. Res., 111, A04209, https://doi.org/10.1029/2005JA011359, 2006.
Evans, E., Bhatti, N., Kinney, J., Pann, L., Pena, M., Yang, S. C., Kalnay, E., and Hansen, J.: RISE undergraduates find that regime changes in Lorenz's Model are predictable, B. Am. Meteorol. Soc., 85, 521–524, 2004.
Hoffman, M. J., Kalnay, E., Carton, J. A., and Yang, S.-C.: Use of breeding to detect and explain instabilities in the global ocean, Geophys. Res. Lett., 36, L12608, https://doi.org/10.1029/2009GL037729, 2009.
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
Download
Short summary
In this article, bred vectors are computed from a single time series data using time-delay embedding, with a new technique, nearest-neighbor breeding. Since the dynamical properties of the nearest-neighbor bred vectors are shown to be similar to bred vectors computed using evolution equations, this provides a new and novel way to model and predict sudden transitions in systems represented by time series data alone.