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Abstract. Bred vectors characterize the nonlinear instability
of dynamical systems and so far have been computed only
for systems with known evolution equations. In this article,
bred vectors are computed from a single time series data us-
ing time-delay embedding, with a new technique, nearest-
neighbor breeding. Since the dynamical properties of the
standard and nearest-neighbor breeding are shown to be sim-
ilar, this provides a new and novel way to model and predict
sudden transitions in systems represented by time series data
alone.

1 Introduction

Prediction of sudden regime changes in the evolution of
dynamical systems is a challenging problem. For systems
with known dynamical models, such as the Earth’s at-
mosphere, simulated trajectories under judiciously chosen,
finite-size perturbations can provide useful information re-
garding regime changes by detecting fast-growing instabili-
ties along the model representation of the system evolution,
called the “control”. Breeding is a technique to generate an
ensemble of such perturbations, developed for operational
ensemble forecasting of the numerical weather prediction
(Toth and Kalnay, 1993, 1997; Kalnay, 2003), and the re-
sulting perturbations are called “bred vectors”. Evans et al.
(2004) demonstrated that the growth rate of the bred vectors

could be used as a means of predicting the regime changes
in the chaotic Lorenz (1963) system (Lorenz, 1963). They
found that the appearance of high growth rate typically indi-
cated that a regime change would occur upon completion of
the current orbit and that the longer the duration of the high
growth rate, the longer the next regime would last.

Models of most natural systems like the Earth’s atmo-
sphere are described by a very large number of dynamical
variables and thus are high dimensional. However, the vari-
ables or degrees of freedom are nonlinearly coupled, and
consequently in dissipative systems the dimensionality of the
phase space is significantly reduced. This is the basis for the
time-delay embedding method in the reconstruction of phase
space (Packard et al., 1980; Takens, 1981). The ability of
this method to yield the dynamics inherent in observational
data, independent of modeling assumptions, has stimulated
the modeling of dynamics using time series data and has led
to the development of forecasting tools. For example, recon-
struction of the dynamics of the Earth’s magnetosphere using
time series data has led to low-dimensional models and fore-
casts of space weather (Sharma et al., 1993; Sharma, 1995).
The data-derived models of magnetospheric substorms and
geospace storms (Vassiliadis et al., 1995; Ukhorskiy et al.,
2002; Valdivia et al., 1996) now provide near-real-time fore-
casts using the solar wind data monitored by the Advanced
Composition Explorer (ACE) spacecraft at the first Lagrange
point (L1).
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This paper presents a novel extension of the original breed-
ing technique to the phase space reconstructed from time se-
ries data using the time-delay embedding method. Because
dynamic instabilities are intrinsically low dimensional (Patil
et al., 2001), such an extension is an appealing approach for
the systems known to exhibit sudden regime changes in their
data. The predictive capabilities of this new breeding tech-
nique are tested using data taken from the chaotic Lorenz
system (Lorenz, 1963).

2 Phase space reconstruction

To extend the breeding technique to a system represented by
a time series x(t) at discrete times t = t1, t2, . . ., tN , we first
give a brief introduction of the time-delay embedding and set
the notation used in this study. The state of the system at ti in
the reconstructed phase space is defined by an m component
vector:

xi = {x1(ti),x2(ti), . . .,xm(ti)} , (1)

where xk(ti)= x (ti − τ(k− 1)1t) is the time-delay coordi-
nate for k = 1, . . .,m; τ is the delay time; and 1t is the tem-
poral resolution of the time series. The vectors xi specify
the dynamical behavior inherent in the data in the form of
a trajectory. The time-delay embedding (Sauer et al., 1991;
Abarbanel et al., 1993; Kantz and Schreiber, 1997) requires
only two parameters, viz., the dimensionm and time delay τ .
Among the several techniques available for obtaining these
parameters from the data, the convergence of the correlation
among the trajectories (Sauer et al., 1991; Abarbanel et al.,
1993; Kantz and Schreiber, 1997) and the minimum in the
mean-square prediction error (Chen and Sharma, 2006) yield
the optimum values of m. The time delay τ also depends on
the correlations, and the minimum of the mutual information
function yields reliable values.

3 Bred vectors in reconstructed phase space

Having defined the reconstructed phase space by the time-
delayed embedding, the new approach to breeding is in
essence a matter of selecting the perturbed trajectories that
capture the unstable directions along the control. Over
a breeding cycle with window size n, the control starting
from xi evolves to xi+n, and its neighbor (perturbed) xj to
xj+n. The corresponding growth rate of the bred vector is
given by

gi =
1
n1t

ln
(
||δxf

i ||/||δx
0
i ||

)
, (2)

where δx0
i = xj − xi and δxf

i = xj+n− xi+n are the initial
and final perturbations of the breeding cycle, respectively.
To select the perturbed trajectory of the next breeding cycle
around the control starting from xi+n, we follow the spirit

of the standard breeding in which the initial perturbation is
given by δx0

i+n = αδx
f
i/||δx

f
i ||; i.e., the final perturbation of

the previous cycle is rescaled and bred as the new perturba-
tion. Here the perturbation size α is constant for all breeding
cycles. In the reconstructed phase space, however, the tra-
jectory is defined by discrete points, and the rescaled posi-
tion xi+n+αδxf

i/||δx
f
i || may not be a trajectory point. We

thus search and select the nearest point xj∗ and refer to the
distance between these two points as the displacement dis-
tance. In order to avoid selecting nearest neighbors that are
on the control trajectory, points xi+j±l immediately adjacent
to xi+n for small l are excluded from the search for xj∗ so
as to ensure that δx0

i+n = xj∗ − xi+n captures the instabil-
ity around the control. We call this technique the “nearest-
neighbor breeding”. Like the standard breeding, it involves
two parameters, viz., the window size n and the target per-
turbation size α. For successful applications of the nearest-
neighbor search, the density of the trajectory points must be
high enough that, on average, the displacement distance in
the nearest-neighbor search is small with respect to target ini-
tial perturbation size α and the correlation between δxf

i and
δx0

i+n is nearly 1.

4 Results and discussion

To test whether the nearest-neighbor breeding shares with the
standard breeding the ability to predict regime changes in the
reconstructed phase space, we use the 3-D Lorenz (1963)
system (Lorenz, 1963) and generate a time series data set.
Along with its simplicity, this system possesses dynamical
properties desirable for this study, namely, strong nonlinear-
ity that manifests in a low-dimensional attractor and chaotic
transitions between two regimes (Fig. 1). The model equa-
tions are given by

dx
dt
= σ (y− x)

dy
dt
= − xz+ rx− y (3)

dz
dt
= xy− bz

with the commonly used parameter values r = 28, b = 8/3,
and σ = 10. Forward integration of the model is performed
using a fourth-order Runge–Kutta with time step 0.01. To re-
construct the phase space from a single time series x(ti) with
the temporal resolution 1t = 0.01, we use the embedding
dimension m= 3 and time delay τ = 7, which correspond
to the timescale of the mutual information function (Sauer
et al., 1991; Abarbanel et al., 1993; Kantz and Schreiber,
1997; Chen and Sharma, 2006). The reconstructed system is
a discrete set of trajectory points that exhibits the dynamical
features of the attractor as shown in Fig. 1c.

The regime transitions are analyzed by performing and
comparing the following three breeding experiments. Ex-
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Figure 1. The first column of figures depicts the growth rates of bred vectors in the Lorenz system using three different methods: (a) standard
breeding in the phase space (x,y,z); (b) nearest-neighbor breeding in the phase space (x,y,z); and (c) nearest-neighbor breeding in the
reconstructed phase space (x1,x2,x3). The colored points correspond to negative (blue), low (green), medium (yellow), and high (red)
growth. The second column of figures depicts the first coordinate of phase space as a function of time, with red stars indicating the points
with high-growth-rate (gi ≥ 6.4) bred vectors for the three different methods: (d) standard breeding in the phase space (x,y,z); (e) nearest-
neighbor breeding in the phase space (x,y,z); and (f) nearest-neighbor breeding in the reconstructed phase space (x1,x2,x3).

periment (a) is the standard breeding in the 3-D model
phase space using Eq. (3) as in Evans et al. (2004). Ex-
periment (b) is the nearest-neighbor breeding applied to
a discrete time series data in the model phase space, i.e.,
x̂i = {x(ti),y(ti),z(ti)}. This experiment reveals whether the
nearest-neighbor breeding, without any knowledge about the
model equations, gives comparable results to the standard
breeding in the original model phase space. Finally, Exper-
iment (c) is our new technique, i.e., the nearest-neighbor
breeding in the phase space reconstructed by the time-delay
embedding of a single time series as in Eq. (1).

In all experiments, the growth rate gi is computed using
the breeding window size n= 8 with 1t = 0.01 and (tar-

geted) perturbation size α = 0.10 over 10 000 total breed-
ing cycles after an initial spin-up to make sure that the tra-
jectory has reached the attractor. To ensure sufficient data
density for the nearest-neighbor search in Experiments (b)
and (c), the respective data sets are constructed from 80 000
data points in the original phase space. By excluding l = 3
adjacent points on the control trajectory from the nearest-
neighbor search, the average displacement distance and vec-
tor correlation between the standard and the nearest-neighbor
breeding are 0.17 and 0.97 in Experiment (b); they are 0.12
and 0.98 in Experiment (c).

The left column of Fig. 1 shows the growth rates along
the respective controls in the three experiments. The magni-
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tudes of the growth rate are represented by colors using the
same empirical thresholds as in Evans et al. (2004): negative
growth points (gi < 0) in blue, low-growth points (0≤ gi <
3.2) in green, medium-growth points (3.2≤ gi < 6.4) in yel-
low, and high-growth points (gi ≥ 6.4) in red. As shown in
Evans et al. (2004) for the standard breeding, all experiments
show high growth at points concentrated in the regime transi-
tion region, while the regions with different growth rates are
well separated. The nearest-neighbor breeding, in the origi-
nal (Fig. 1b) and reconstructed (Fig. 1c) phase spaces, suc-
cessfully captures the features found in the standard breed-
ing (Fig. 1a), although the separation between the different
growth rates is less sharp. The right column of Fig. 1 shows
the time series of the first phase space coordinate (x) for the
first 500 breeding cycles for each of the three experiments.
Note that, by construction, the first coordinate x in phase
space coincides with the first coordinate x1 in the embedded
space.

As pointed out by Evans et al. (2004) and apparent in the
right column of Fig. 1, high bred vector growth rate, marked
in red, is a very good predictor of regime change in the stan-
dard breeding in the Lorenz model. Thus we test the predic-
tive capabilities of the bred vectors for the regime changes
in terms of the binary (Yes–No) forecasts based on the rule
suggested by Evans et al. (2004): the presence of a red star in
the previous orbit renders the regime change (Yes), while the
absence means the continuation of the current regime (No).
We note that we slightly modified the empirical rule for the
experiments using nearest-neighbor breeding, by excluding
red stars when they occurred on orbits with extrema of x1
whose absolute value was greater than 1, since they led to
false alarms in the prediction of regime change.

Table 1 is the contingency table (Wilks, 1995) of the fore-
cast/event pairs for the three experiments, where individual
forecasts (FCST) are made by the rule and the observed
events (OBS) are based on the actual occurrence or non-
occurrence of the transition. Corresponding accuracy mea-
sures for these binary forecasts (Wilks, 1995) are shown in
Tables 2 using the hit rate (HR), threat score (TS), and false
alarm rate (FAR). It is apparent that the three experiments
succeed in predicting with similar accuracy the change of
regime. The HRs and TSs for the three methods are close,
varying from 82 to 87, and 72 to 76 %, respectively. The
FARs are about 6 % for the standard breeding but increase to
11 and 13 % when nearest-neighbor breeding is used in the
original model phase space and in the reconstructed phase
space, respectively.

We note that, in addition to large bred vector growth rate,
two other methods have been also proposed to predict regime
changes in the Lorenz three variable system. In his origi-
nal paper (Lorenz, 1963), Lorenz pointed out that regime
changes were associated with large values of the variable z.
Yadav et al. (2005) showed that large absolute magnitudes
of the x variable are also a good predictor. We have imple-
mented the method used in Yadav et al. (2005) for the time

Table 1. Contingency tables based on the rule that regime change
will occur in the orbit following the appearance of high-growth-rate
bred vectors using three different methods. In (b) and (c) using the
nearest-neighbor breeding, high-growth-rate points in orbits with
absolute values of extrema above 1 are excluded. OBS and FCST
stand for observed and forecast, respectively; (a)–(c) are the same
as in Fig. 1.

OBS

Yes No Total

Yes 374 38 412
(a) FCST No 80 573 653

Total 454 611 1065

Yes 396 67 463
(b) FCST No 58 544 602

Total 454 611 1065

Yes 383 77 460
(c) FCST No 71 534 605

Total 454 611 1065

Table 2. Measures of forecast accuracy in terms of the hit rate (HR),
threat score (TS), and false alarm rate (FAR); (a)–(c) are the same
as in Fig. 1. The final row shows the values when the threshold of
x(ti) rule is used.

HR (%) TS (%) FAR (%)

(a) 82.4 76.0 5.2
(b) 87.2 76.0 11.0
(c) 84.4 72.1 12.6

series x(t) and got equally good results. However, the main
objective of this paper is to determine whether bred vectors
can predict stability from a single time series data, i.e., in
the reconstructed phase space. The reasons for the choice of
bred vectors as a predictor of fast growth in the dynamical
system are two-fold. First, unlike the size of a particular vari-
able, breeding can be tested in any dynamical model. Sec-
ond, bred vector perturbations and their growth have a clear
physical meaning in that they detect instabilities (Hoffman
et al., 2009) and are akin to the leading local Lyapunov vec-
tor and their corresponding growth (Norwood et al., 2013).
Thus while predictions based on threshold values of a single
variable work well for the Lorenz model, bred vector growth
rate may be suitable for making predictions in a broad range
of dynamical systems. The bred vectors, by their ability to
capture nonlinearity in instability growth, can characterize
instability in dynamical systems in a more general manner
than Lyapunov vectors and provide a way to obtain regime
change in cases where the latter are computed from the time
series data (Vassiliadis et al., 1991).

For the binary forecasts, Evans et al. (2004) noted that the
next regime tended to be longer-lasting when the duration
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of the high growth rate is longer using the standard breed-
ing (Fig. 1d). This tendency is also found using the nearest-
neighbor breeding in the reconstructed phase space in Ex-
periment (c). However, in Fig. 1f, the cases of high growth
rate may be separated by slower growth rates (e.g., at time
t ∼ 23) due to the time delay involved in the construction of
the embedded time series.

5 Conclusions

The ability to predict regime change in a dynamical system
using the time series data of just one of its many variables,
demonstrated in this paper, has important implications. For
most systems in nature and in laboratory, the time series ob-
servations of only a limited number of physical variables, of-
ten a single variable, are available. In many cases even the
actual number of variables is not known. This paper presents
and demonstrates that the nearest-neighbor breeding enables
the prediction of regime change in systems for which regime
change follows the appearance of instabilities, thus extending
the predictive capability beyond the cases whose time evolu-
tion equations are known. Further, when regime change is as-
sociated with large changes in the dynamical states, this tech-
nique can lead to the prediction of large or extreme events in
the cases where nonlinear dynamical predictions are made
using time series data, e.g., in the Earth’s magnetosphere and
space weather (Chen and Sharma, 2006).
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