Articles | Volume 21, issue 6
https://doi.org/10.5194/npg-21-1133-2014
https://doi.org/10.5194/npg-21-1133-2014
Research article
 | 
28 Nov 2014
Research article |  | 28 Nov 2014

Instability and change detection in exponential families and generalized linear models, with a study of Atlantic tropical storms

Y. Lu and S. Chatterjee

Related authors

Probabilistic evaluation of competing climate models
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93–105, https://doi.org/10.5194/ascmo-3-93-2017,https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Logit-normal mixed model for Indian monsoon precipitation
L. R. Dietz and S. Chatterjee
Nonlin. Processes Geophys., 21, 939–953, https://doi.org/10.5194/npg-21-939-2014,https://doi.org/10.5194/npg-21-939-2014, 2014
Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
A. R. Ganguly, E. A. Kodra, A. Agrawal, A. Banerjee, S. Boriah, Sn. Chatterjee, So. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles
Nonlin. Processes Geophys., 21, 777–795, https://doi.org/10.5194/npg-21-777-2014,https://doi.org/10.5194/npg-21-777-2014, 2014

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Albers, W. and Kallenberg, W. C. M.: CUMIN Charts, Metrika, 70, 111–130, 2009.
Alwan, L. C.: Designing an Effective EF-CUSUM Chart without the Use of Nomographs, Communic. Stat.-Theory Methods, 29, 2879–2893, 2000.
Atienza, O. O., Tang, L. C., and Ang, B. W.: A Uniform Most Powerful Cumulative Sum Scheme Based on Symmetry, J. Roy. Stat. Soc. Series D, 49, 209–217, 2000.
Bolton, R. J. and Hand, D. J.: Statistical fraud detection: A review, Stat. Sci., 17, 235–255, 2002.
Brown, R. L., Durbin, J., and Evans, J. M.: Techniques for Testing the Constancy of Regression Relationships over Time, J. Roy. Stat. Soc. B, 37, 149–192, 1975.
Download
Short summary
It is rarely ensured that the parameters of statistical distributions are stable through the entire duration of a data collection process. A failure of stability leads to nonsmoothness and nonlinearity in the physical processes. We propose testing for stability of parameters of exponential family distributions and generalized linear models. We study Atlantic tropical storms using the techniques developed here.