Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-339-2019
https://doi.org/10.5194/npg-26-339-2019
Research article
 | 
26 Sep 2019
Research article |  | 26 Sep 2019

Statistical post-processing of ensemble forecasts of the height of new snow

Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly

Related authors

Bridging the gap between ensemble forecasting and end-user needs for decision-making on high-impact events
Matteo Ponzano, Bruno Joly, Isabelle Beau, Elvis Renard, and Gregory Fifre
Adv. Sci. Res., 22, 39–52, https://doi.org/10.5194/asr-22-39-2025,https://doi.org/10.5194/asr-22-39-2025, 2025
Short summary
Enhancing simulations of snowpack properties in land surface models with the Soil, Vegetation and Snow scheme v2.0 (SVS2)
Vincent Vionnet, Nicolas Romain Leroux, Vincent Fortin, Maria Abrahamowicz, Georgina Woolley, Giulia Mazzotti, Manon Gaillard, Matthieu Lafaysse, Alain Royer, Florent Domine, Nathalie Gauthier, Nick Rutter, Chris Derksen, and Stéphane Bélair
EGUsphere, https://doi.org/10.5194/egusphere-2025-3396,https://doi.org/10.5194/egusphere-2025-3396, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025,https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Improving Precipitation Interpolation Using Anisotropic Variograms Derived from Convection-Permitting Regional Climate Model Simulations
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1779,https://doi.org/10.5194/egusphere-2025-1779, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Evaluation of annual maximum snow depth data estimation from the European-wide reanalysis C3S MTMSI (Copernicus Climate Change Service – Mountain Tourism Meteorological and Snow Indicators) against in-situ observations
Elisa Kamir, Samuel Morin, Guillaume Evin, Penelope Gehring, Bodo Wichura, and Ali Nadir Arslan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-225,https://doi.org/10.5194/essd-2025-225, 2025
Preprint under review for ESSD
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Statistical and neural network assessment of the climatology of fog and mist at Pula Airport in Croatia
Marko Zoldoš, Tomislav Džoić, Jadran Jurković, Frano Matić, Sandra Jambrošić, Ivan Ljuština, and Maja Telišman Prtenjak
Nonlin. Processes Geophys., 32, 89–106, https://doi.org/10.5194/npg-32-89-2025,https://doi.org/10.5194/npg-32-89-2025, 2025
Short summary
Learning extreme vegetation response to climate drivers with recurrent neural networks
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024,https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary

Cited articles

Baran, S. and Lerch, S.: Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting, Q. J. Roy. Meteorol. Soc., 141, 2289–2299, https://doi.org/10.1002/qj.2521, 2015. a
Baran, S. and Lerch, S.: Mixture EMOS model for calibrating ensemble forecasts of wind speed, Environmetrics, 27, 116–130, https://doi.org/10.1002/env.2380, 2016. a
Baran, S. and Nemoda, D.: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting, Environmetrics, 27, 280–292, https://doi.org/10.1002/env.2391, 2016. a, b
Barkmeijer, J., Van Gijzen, M., and Bouttier, F.: Singular vectors and estimates of the analysis-error covariance metric, Q. J. Roy. Meteorol. Soc., 124, 1695–1713, https://doi.org/10.1256/smsqj.54915, 1998. a
Barkmeijer, J., Buizza, R., and Palmer, T.: 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System, Q. J. Roy. Meteorol. Soc., 125, 2333–2351, https://doi.org/10.1256/smsqj.55817, 1999. a
Download
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Share