Articles | Volume 26, issue 3
Nonlin. Processes Geophys., 26, 325–338, 2019
Nonlin. Processes Geophys., 26, 325–338, 2019

Research article 17 Sep 2019

Research article | 17 Sep 2019

Revising the stochastic iterative ensemble smoother

Patrick Nima Raanes et al.

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41,,, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22,,, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500,,, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487,,, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss.,,, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, 2016. a, b
Bardsley, J. M., Solonen, A., Haario, H., and Laine, M.: Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems, SIAM J. Sci. Comput., 36, A1895–A1910, 2014. a
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, 2016. a
Bocquet, M. and Carrassi, A.: Four-dimensional ensemble variational data assimilation and the unstable subspace, Tellus A, 69, 1304504,, 2017. a
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399,, 2012. a, b, c
Short summary
A popular variational ensemble smoother for data assimilation and history matching is simplified. An exact relationship between ensemble linearizations (linear regression) and adjoints (analytic derivatives) is established.