Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-251-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/npg-26-251-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
Jürgen Kurths
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Telegrafenberg, Potsdam, Germany
Institute of Earth and Environmental Science, University of Potsdam,
Potsdam, Germany
Institute of Physics, Humboldt Universität zu Berlin, Germany
Invited contribution by Jürgen Kurths, recipient of the EGU Lewis Fry Richardson Medal 2013.
Ankit Agarwal
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Telegrafenberg, Potsdam, Germany
Institute of Earth and Environmental Science, University of Potsdam,
Potsdam, Germany
GFZ German Research Centre for Geosciences, Section 5.4: Hydrology,
Telegrafenberg, Potsdam, Germany
Roopam Shukla
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Telegrafenberg, Potsdam, Germany
Norbert Marwan
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Telegrafenberg, Potsdam, Germany
Maheswaran Rathinasamy
Dept. of Civil Engineering, MVGR College of Engineering, Vizianagaram,
India
Levke Caesar
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Telegrafenberg, Potsdam, Germany
Institute of Physics and Astronomy, University of Potsdam, Potsdam,
Germany
Raghavan Krishnan
Indian Institute of Tropical Meteorology, Pune, India
Bruno Merz
Institute of Earth and Environmental Science, University of Potsdam,
Potsdam, Germany
GFZ German Research Centre for Geosciences, Section 5.4: Hydrology,
Telegrafenberg, Potsdam, Germany
Related authors
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793, https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used here to upscale precipitation climate networks to study the Indian Monsoon and analyse strong dependencies between spatial regions, which change with changing scale.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31, https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Short summary
For more than a decade, the climate has attracted stochastic dynamists with its unpredictable and complex phenomena. Our attention was attracted by the results of studies on the possibility of oceanic thermohaline circulation failure. We set the task to analyze the stability of the circulation current on-state and to predetermine what extreme events can unbalance it leading to attenuation. We also suggested possible scenarios for the resuscitation of the circulation in the event of its fading.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
T. K. D. Peron, C. H. Comin, D. R. Amancio, L. da F. Costa, F. A. Rodrigues, and J. Kurths
Nonlin. Processes Geophys., 21, 1127–1132, https://doi.org/10.5194/npg-21-1127-2014, https://doi.org/10.5194/npg-21-1127-2014, 2014
Short summary
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding
the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
D. Eroglu, N. Marwan, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1085–1092, https://doi.org/10.5194/npg-21-1085-2014, https://doi.org/10.5194/npg-21-1085-2014, 2014
B. Goswami, J. Heitzig, K. Rehfeld, N. Marwan, A. Anoop, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1093–1111, https://doi.org/10.5194/npg-21-1093-2014, https://doi.org/10.5194/npg-21-1093-2014, 2014
Short summary
Short summary
We present a new approach to estimating sedimentary proxy records along with the proxy uncertainty. We provide analytical expressions for the proxy record, while transparently propagating uncertainties from the ages to the proxy record. We represent proxies on an error-free, precise timescale. Our approach provides insight into the interrelations between proxy variability and the various uncertainties. We demonstrate our method with synthetic examples and proxy data from the Lonar lake in India.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan, J. Kurths, and M. Paluš
Nonlin. Processes Geophys., 21, 451–462, https://doi.org/10.5194/npg-21-451-2014, https://doi.org/10.5194/npg-21-451-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793, https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used here to upscale precipitation climate networks to study the Indian Monsoon and analyse strong dependencies between spatial regions, which change with changing scale.
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024, https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
Short summary
The Himalayan landscape is particularly susceptible to extreme events, which interfere with increasing populations and the expansion of settlements and infrastructure. This preface introduces and summarizes the nine papers that are part of the special issue,
Estimating and predicting natural hazards and vulnerabilities in the Himalayan region.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Preprint under review for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-97, https://doi.org/10.5194/nhess-2024-97, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
The July 2021 flood in Central Europe was one of the deadliest floods in Europe in the past decades and the most expensive flood in Germany. In this paper we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory was only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps better prepare for future extreme floods.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Marina Batalini de Macedo, Nikunj K. Mangukiya, Maria Clara Fava, Ashutosh Sharma, Roberto Fray da Silva, Ankit Agarwal, Maria Tereza Razzolini, Eduardo Mario Mendiondo, Narendra K. Goel, Mathew Kurian, and Adelaide Cássia Nardocci
Proc. IAHS, 386, 41–46, https://doi.org/10.5194/piahs-386-41-2024, https://doi.org/10.5194/piahs-386-41-2024, 2024
Short summary
Short summary
More and more extreme rainfall causes flooding problems in cities and communities, affecting the health and well-being of the population, as well as causing damage to the economy. To help design actions aiming at reducing the impacts of these floods, computational models can be used to simulate their extent. However, there are different types of models currently available. In this study, we evaluated three different models, for a city in Brazil and a region in India, to guide the best use of it.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-856, https://doi.org/10.5194/egusphere-2024-856, 2024
Short summary
Short summary
We discuss the validation of flood hazard and risk assessments (FHRAs) to ensure they are useful for decision-making. We propose a new validation framework that considers not only technical aspects but also the real-world context in which decisions are made. By applying this framework to flood emergency planning, we demonstrate its practicality.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Abhishek Kashyap, Mukunda Dev Behera, Anand Kumar Pandey, and Ankit Agarwal
EGUsphere, https://doi.org/10.5194/egusphere-2022-533, https://doi.org/10.5194/egusphere-2022-533, 2022
Preprint archived
Short summary
Short summary
Bedrock landslides are currently spatially dispersed over a process of landscape evolution in the NW Himalayan river catchments. Our analysis indicates that the zones with slope range between 24–32°, topographic relief ranges between 800–1200 m, and elevation range between 1200–2400 m, are compatible with precipitation intensity ranges between 1500–3000 mm/year in the NW Himalayan river catchments, have the highest probability of frequently occurring landslides.
Pankaj R. Dhote, Joshal K. Bansal, Vaibhav Garg, Praveen K. Thakur, and Ankit Agarwal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-101, https://doi.org/10.5194/nhess-2022-101, 2022
Preprint withdrawn
Short summary
Short summary
In the present paper, we have developed framework to establish virtual stage-discharge gauging network in sparsely gauged basin using hydrodynamic modelling and satellite altimetry data. The publication of the work will provide more insights to hydraulic community dealing with flood hazard in sparsely gauged basins, on how to monitor extreme river flow events using remote sensing data at ungauged locations.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Giorgia Di Capua, Jakob Runge, Reik V. Donner, Bart van den Hurk, Andrew G. Turner, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Weather Clim. Dynam., 1, 519–539, https://doi.org/10.5194/wcd-1-519-2020, https://doi.org/10.5194/wcd-1-519-2020, 2020
Short summary
Short summary
We study the interactions between the tropical convective activity and the mid-latitude circulation in the Northern Hemisphere during boreal summer. We identify two circumglobal wave patterns with phase shifts corresponding to the South Asian and the western North Pacific monsoon systems at an intra-seasonal timescale. These patterns show two-way interactions in a causal framework at a weekly timescale and assess how El Niño affects these interactions.
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31, https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Short summary
For more than a decade, the climate has attracted stochastic dynamists with its unpredictable and complex phenomena. Our attention was attracted by the results of studies on the possibility of oceanic thermohaline circulation failure. We set the task to analyze the stability of the circulation current on-state and to predetermine what extreme events can unbalance it leading to attenuation. We also suggested possible scenarios for the resuscitation of the circulation in the event of its fading.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-11, https://doi.org/10.5194/esd-2019-11, 2019
Manuscript not accepted for further review
Short summary
Short summary
Both drivers from the mid-latitudes and from the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Bruno Merz, and Heiko Apel
Nat. Hazards Earth Syst. Sci., 18, 2859–2876, https://doi.org/10.5194/nhess-18-2859-2018, https://doi.org/10.5194/nhess-18-2859-2018, 2018
Short summary
Short summary
In this study we provide an estimation of flood damages and risks to rice cultivation in the Mekong Delta. The derived modelling concept explicitly takes plant phenomenology and timing of floods in a probabilistic modelling framework into account. This results in spatially explicit flood risk maps to rice cultivation, quantified as expected annual damage. Furthermore, the changes in flood risk of two land-use scenarios were estimated and discussed.
Suvarna Fadnavis, Chaitri Roy, Rajib Chattopadhyay, Christopher E. Sioris, Alexandru Rap, Rolf Müller, K. Ravi Kumar, and Raghavan Krishnan
Atmos. Chem. Phys., 18, 11493–11506, https://doi.org/10.5194/acp-18-11493-2018, https://doi.org/10.5194/acp-18-11493-2018, 2018
Short summary
Short summary
Rapid industrialization, traffic growth and urbanization resulted in a significant increase in the tropospheric trace gases over Asia. There is global concern about rising levels of these trace gases. The monsoon convection transports these gases to the upper-level-anticyclone. In this study, we show transport of these gases to the extratropics via eddy-shedding from the anticyclone. We also deliberate on changes in ozone heating rates due to the transport of Asian trace gases.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou
Geosci. Model Dev., 11, 665–679, https://doi.org/10.5194/gmd-11-665-2018, https://doi.org/10.5194/gmd-11-665-2018, 2018
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Mathias Seibert, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 1611–1629, https://doi.org/10.5194/hess-21-1611-2017, https://doi.org/10.5194/hess-21-1611-2017, 2017
Short summary
Short summary
Seasonal early warning is vital for drought management in arid regions like the Limpopo Basin in southern Africa. This study shows that skilled seasonal forecasts can be achieved with statistical methods built upon driving factors for drought occurrence. These are the hydrological factors for current streamflow and meteorological drivers represented by anomalies in sea surface temperatures of the surrounding oceans, which combine to form unique combinations in the drought forecast models.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Lars Gerlitz, Sergiy Vorogushyn, Heiko Apel, Abror Gafurov, Katy Unger-Shayesteh, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4605–4623, https://doi.org/10.5194/hess-20-4605-2016, https://doi.org/10.5194/hess-20-4605-2016, 2016
Short summary
Short summary
Most statistically based seasonal precipitation forecast models utilize a small set of well-known climate indices as potential predictor variables. However, for many target regions, these indices do not lead to sufficient results and customized predictors are required for an accurate prediction.
This study presents a statistically based routine, which automatically identifies suitable predictors from globally gridded SST and climate variables by means of an extensive data mining procedure.
William J. Gutowski Jr., Filippo Giorgi, Bertrand Timbal, Anne Frigon, Daniela Jacob, Hyun-Suk Kang, Krishnan Raghavan, Boram Lee, Christopher Lennard, Grigory Nikulin, Eleanor O'Rourke, Michel Rixen, Silvina Solman, Tannecia Stephenson, and Fredolin Tangang
Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, https://doi.org/10.5194/gmd-9-4087-2016, 2016
Short summary
Short summary
The Coordinated Regional Downscaling Experiment (CORDEX) is a diagnostic MIP in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global output to produce downscaled projected changes in regional climates, and assess sources of uncertainties in the projections.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Heiko Apel, Oriol Martínez Trepat, Nguyen Nghia Hung, Do Thi Chinh, Bruno Merz, and Nguyen Viet Dung
Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, https://doi.org/10.5194/nhess-16-941-2016, 2016
Short summary
Short summary
Many urban areas experience both fluvial and pluvial floods, thus this study aims to analyse fluvial and pluvial flood hazards as well as combined pluvial and fluvial flood hazards. This combined fluvial–pluvial flood hazard analysis is performed in a tropical environment for Can Tho city in the Mekong Delta. The final results are probabilistic hazard maps, showing the maximum inundation caused by floods of different magnitudes along with an uncertainty estimation.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
M. V. S Ramarao, R. Krishnan, J. Sanjay, and T. P. Sabin
Earth Syst. Dynam., 6, 569–582, https://doi.org/10.5194/esd-6-569-2015, https://doi.org/10.5194/esd-6-569-2015, 2015
Short summary
Short summary
This study using a variable resolution global climate model having high-resolution zooming over the South Asian region indicates that the anthropogenic effects have influenced the recent weakening of the monsoon circulation and decline of precipitation. The simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. This summer time soil drying is detectable under RCP4.5 scenario.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz
Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, https://doi.org/10.5194/hess-19-309-2015, 2015
Short summary
Short summary
Extreme antecedent precipitation, increased initial hydraulic load in the river network and strong but not extraordinary event precipitation were key drivers for the flood in June 2013 in Germany. Our results are based on extreme value statistics and aggregated severity indices which we evaluated for a set of 74 historic large-scale floods. This flood database and the methodological framework enable the rapid assessment of future floods using precipitation and discharge observations.
T. K. D. Peron, C. H. Comin, D. R. Amancio, L. da F. Costa, F. A. Rodrigues, and J. Kurths
Nonlin. Processes Geophys., 21, 1127–1132, https://doi.org/10.5194/npg-21-1127-2014, https://doi.org/10.5194/npg-21-1127-2014, 2014
Short summary
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding
the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
D. Eroglu, N. Marwan, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1085–1092, https://doi.org/10.5194/npg-21-1085-2014, https://doi.org/10.5194/npg-21-1085-2014, 2014
B. Goswami, J. Heitzig, K. Rehfeld, N. Marwan, A. Anoop, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1093–1111, https://doi.org/10.5194/npg-21-1093-2014, https://doi.org/10.5194/npg-21-1093-2014, 2014
Short summary
Short summary
We present a new approach to estimating sedimentary proxy records along with the proxy uncertainty. We provide analytical expressions for the proxy record, while transparently propagating uncertainties from the ages to the proxy record. We represent proxies on an error-free, precise timescale. Our approach provides insight into the interrelations between proxy variability and the various uncertainties. We demonstrate our method with synthetic examples and proxy data from the Lonar lake in India.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
J. M. Delgado, B. Merz, and H. Apel
Nat. Hazards Earth Syst. Sci., 14, 1579–1589, https://doi.org/10.5194/nhess-14-1579-2014, https://doi.org/10.5194/nhess-14-1579-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan, J. Kurths, and M. Paluš
Nonlin. Processes Geophys., 21, 451–462, https://doi.org/10.5194/npg-21-451-2014, https://doi.org/10.5194/npg-21-451-2014, 2014
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
A. Domeneghetti, S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath
Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, https://doi.org/10.5194/hess-17-3127-2013, 2013
N. V. Manh, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, https://doi.org/10.5194/hess-17-3039-2013, 2013
N. Itoh and N. Marwan
Nonlin. Processes Geophys., 20, 467–481, https://doi.org/10.5194/npg-20-467-2013, https://doi.org/10.5194/npg-20-467-2013, 2013
D. Duethmann, J. Zimmer, A. Gafurov, A. Güntner, D. Kriegel, B. Merz, and S. Vorogushyn
Hydrol. Earth Syst. Sci., 17, 2415–2434, https://doi.org/10.5194/hess-17-2415-2013, https://doi.org/10.5194/hess-17-2415-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
S. Uhlemann, R. Bertelmann, and B. Merz
Hydrol. Earth Syst. Sci., 17, 895–911, https://doi.org/10.5194/hess-17-895-2013, https://doi.org/10.5194/hess-17-895-2013, 2013
N. V. Dung, B. Merz, A. Bárdossy, and H. Apel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-275-2013, https://doi.org/10.5194/nhessd-1-275-2013, 2013
Revised manuscript not accepted
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
Related subject area
Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
The sampling method for optimal precursors of El Niño–Southern Oscillation events
A comparison of two causal methods in the context of climate analyses
A two-fold deep-learning strategy to correct and downscale winds over mountains
Downscaling of surface wind forecasts using convolutional neural networks
Superstatistical analysis of sea surface currents in the Gulf of Trieste, measured by high-frequency radar, and its relation to wind regimes using the maximum-entropy principle
Learning Extreme Vegetation Response to Climate Forcing: A Comparison of Recurrent Neural Network Architectures
Physically constrained covariance inflation from location uncertainty
Data-driven methods to estimate the committor function in conceptual ocean models
Exploring meteorological droughts' spatial patterns across Europe through complex network theory
Rain process models and convergence to point processes
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Predicting sea surface temperatures with coupled reservoir computers
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Using neural networks to improve simulations in the gray zone
Direct Bayesian model reduction of smaller scale convective activity conditioned on large-scale dynamics
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
The blessing of dimensionality for the analysis of climate data
Empirical evidence of a fluctuation theorem for the wind mechanical power input into the ocean
Producing realistic climate data with generative adversarial networks
Identification of droughts and heatwaves in Germany with regional climate networks
Recurrence analysis of extreme event-like data
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Applications of matrix factorization methods to climate data
Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields
Simulation-based comparison of multivariate ensemble post-processing methods
Detecting dynamical anomalies in time series from different palaeoclimate proxy archives using windowed recurrence network analysis
Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory
Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression
On fluctuating momentum exchange in idealised models of air–sea interaction
A prototype stochastic parameterization of regime behaviour in the stably stratified atmospheric boundary layer
Statistical post-processing of ensemble forecasts of the height of new snow
Statistical hypothesis testing in wavelet analysis: theoretical developments and applications to Indian rainfall
Comparison of stochastic parameterizations in the framework of a coupled ocean–atmosphere model
Idealized models of the joint probability distribution of wind speeds
Nonlinear analysis of the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea
A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 1: Frequency analysis
A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 2: Extension to time–frequency analysis
Tipping point analysis of ocean acoustic noise
On the intrinsic timescales of temporal variability in measurements of the surface solar radiation
Optimal heavy tail estimation – Part 1: Order selection
Network-based study of Lagrangian transport and mixing
Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach
Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion
A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024, https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Short summary
We train neural networks as denoising diffusion models for state generation in the Lorenz 1963 system and demonstrate that they learn an internal representation of the system. We make use of this learned representation and the pre-trained model in two downstream tasks: surrogate modelling and ensemble generation. For both tasks, the diffusion model can outperform other more common approaches. Thus, we see a potential of representation learning with diffusion models for dynamical systems.
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024, https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Short summary
The characterisation of abrupt transitions in palaeoclimate records allows understanding of millennial climate variability and potential tipping points in the context of current climate change. In our study an algorithmic method, the matrix profile, is employed to characterise abrupt warmings designated as Dansgaard–Oeschger (DO) events and to identify the most similar transitions in the palaeoclimate time series.
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024, https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Short summary
During the last 2 years, tremendous progress has been made in global data-driven weather models trained on reanalysis data. In this study, the Pangu-Weather model is compared to several numerical weather prediction models with and without probabilistic post-processing for temperature and wind speed forecasting. The results confirm that global data-driven models are promising for operational weather forecasting and that post-processing can improve these forecasts considerably.
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024, https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
Short summary
Different from traditional deterministic optimization algorithms, we implement the sampling method to compute the conditional nonlinear optimal perturbations (CNOPs) in the realistic and predictive coupled ocean–atmosphere model, which reduces the first-order information to the zeroth-order one, avoiding the high-cost computation of the gradient. The numerical performance highlights the importance of stochastic optimization algorithms to compute CNOPs and capture initial optimal precursors.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024, https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary
Short summary
Forecasting wind fields over mountains is of high importance for several applications and particularly for understanding how wind erodes and disperses snow. Forecasters rely on operational wind forecasts over mountains, which are currently only available on kilometric scales. These forecasts can also be affected by errors of diverse origins. Here we introduce a new strategy based on artificial intelligence to correct large-scale wind forecasts in mountains and increase their spatial resolution.
Florian Dupuy, Pierre Durand, and Thierry Hedde
Nonlin. Processes Geophys., 30, 553–570, https://doi.org/10.5194/npg-30-553-2023, https://doi.org/10.5194/npg-30-553-2023, 2023
Short summary
Short summary
Forecasting near-surface winds over complex terrain requires high-resolution numerical weather prediction models, which drastically increase the duration of simulations and hinder them in running on a routine basis. A faster alternative is statistical downscaling. We explore different ways of calculating near-surface wind speed and direction using artificial intelligence algorithms based on various convolutional neural networks in order to find the best approach for wind downscaling.
Sofia Flora, Laura Ursella, and Achim Wirth
Nonlin. Processes Geophys., 30, 515–525, https://doi.org/10.5194/npg-30-515-2023, https://doi.org/10.5194/npg-30-515-2023, 2023
Short summary
Short summary
An increasing amount of data allows us to move from low-order moments of fluctuating observations to their PDFs. We found the analytical fat-tailed PDF form (a combination of Gaussian and two-exponential convolutions) for 2 years of sea surface current increments in the Gulf of Trieste, using superstatistics and the maximum-entropy principle twice: on short and longer timescales. The data from different wind regimes follow the same analytical PDF, pointing towards a universal behaviour.
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
EGUsphere, https://doi.org/10.5194/egusphere-2023-2368, https://doi.org/10.5194/egusphere-2023-2368, 2023
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Yicun Zhen, Valentin Resseguier, and Bertrand Chapron
Nonlin. Processes Geophys., 30, 237–251, https://doi.org/10.5194/npg-30-237-2023, https://doi.org/10.5194/npg-30-237-2023, 2023
Short summary
Short summary
This paper provides perspective that the displacement vector field of physical state fields should be determined by the tensor fields associated with the physical fields. The advantage of this perspective is that certain physical quantities can be conserved while applying a displacement vector field to transfer the original physical field. A direct application of this perspective is the physically constrained covariance inflation scheme proposed in this paper.
Valérian Jacques-Dumas, René M. van Westen, Freddy Bouchet, and Henk A. Dijkstra
Nonlin. Processes Geophys., 30, 195–216, https://doi.org/10.5194/npg-30-195-2023, https://doi.org/10.5194/npg-30-195-2023, 2023
Short summary
Short summary
Computing the probability of occurrence of rare events is relevant because of their high impact but also difficult due to the lack of data. Rare event algorithms are designed for that task, but their efficiency relies on a score function that is hard to compute. We compare four methods that compute this function from data and measure their performance to assess which one would be best suited to be applied to a climate model. We find neural networks to be most robust and flexible for this task.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Scott Hottovy and Samuel N. Stechmann
Nonlin. Processes Geophys., 30, 85–100, https://doi.org/10.5194/npg-30-85-2023, https://doi.org/10.5194/npg-30-85-2023, 2023
Short summary
Short summary
Rainfall is erratic and difficult to predict. Thus, random models are often used to describe rainfall events. Since many of these random models are based more on statistics than physical laws, it is desirable to develop connections between the random statistical models and the underlying physics of rain. Here, a physics-based model is shown to converge to a statistics-based model, which helps to provide a physical basis for the statistics-based model.
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022, https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Short summary
In this study, we successfully built and evaluated machine learning models for predicting water level dynamics as a proxy for compound flooding hazards in a data-scarce delta. The issues that we tackled here are data scarcity and low computational resources for building flood forecasting models. The proposed approach is suitable for use by local water management agencies in developing countries that encounter these issues.
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022, https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Short summary
The complexity of geophysics systems results in time series with fluctuations at all timescales. The analysis of their variability then consists in decomposing them into a set of basis signals. We developed here a new adaptive filtering method called empirical adaptive wavelet decomposition that optimizes the empirical-mode decomposition existing technique, overcoming its drawbacks using the rigour of wavelets as defined in the recently published empirical wavelet transform method.
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022, https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Short summary
As sea surface temperature (SST) is vital for understanding the greater climate of the Earth and is also an important variable in weather prediction, we propose a model that effectively capitalizes on the reduced complexity of machine learning models while still being able to efficiently predict over a large spatial domain. We find that it is proficient at predicting the SST at specific locations as well as over the greater domain of the Earth’s oceans.
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022, https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary
Short summary
In most of the investigations on metastable systems, the stochastic forcing is modulated by Gaussian noise. Lévy noise laws, which describe jump processes, have recently received a lot of attention, but much less is known. We study stochastic versions of the Ghil–Sellers energy balance model, and we highlight the fundamental difference between how transitions are performed between the competing warm and snowball states, depending on whether Gaussian or Lévy noise acts as forcing.
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022, https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary
Short summary
Our regional numerical weather prediction models run at kilometer-scale resolutions. Processes that occur at smaller scales not yet resolved contribute significantly to the atmospheric flow. We use a neural network (NN) to represent the unresolved part of physical process such as cumulus clouds. We test this approach on a simplified, yet representative, 1D model and find that the NN corrections vastly improve the model forecast up to a couple of days.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022, https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Short summary
The skewness of a time series is commonly used to quantify the extent to which positive (negative) deviations from the mean are larger than negative (positive) ones. However, in some cases, traditional skewness may not provide reliable information about time series skewness, motivating the development of a waveform skewness index in this paper. The waveform skewness index is used to show that changes in the relationship strength between climate time series could arise from changes in skewness.
Bo Christiansen
Nonlin. Processes Geophys., 28, 409–422, https://doi.org/10.5194/npg-28-409-2021, https://doi.org/10.5194/npg-28-409-2021, 2021
Short summary
Short summary
In geophysics we often need to analyse large samples of high-dimensional fields. Fortunately but counterintuitively, such high dimensionality can be a blessing, and we demonstrate how this allows simple analytical results to be derived. These results include estimates of correlations between sample members and how the sample mean depends on the sample size. We show that the properties of high dimensionality with success can be applied to climate fields, such as those from ensemble modelling.
Achim Wirth and Bertrand Chapron
Nonlin. Processes Geophys., 28, 371–378, https://doi.org/10.5194/npg-28-371-2021, https://doi.org/10.5194/npg-28-371-2021, 2021
Short summary
Short summary
In non-equilibrium statistical mechanics, which describes forced-dissipative systems such as air–sea interaction, there is no universal probability density function (pdf). Some such systems have recently been demonstrated to exhibit a symmetry called a fluctuation theorem (FT), which strongly constrains the shape of the pdf. Using satellite data, the mechanical power input to the ocean by air–sea interaction following or not a FT is questioned. A FT is found to apply over specific ocean regions.
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
Short summary
This paper investigates the potential of a type of deep generative neural network to produce realistic weather situations when trained from the climate of a general circulation model. The generator represents the climate in a compact latent space. It is able to reproduce many aspects of the targeted multivariate distribution. Some properties of our method open new perspectives such as the exploration of the extremes close to a given state or how to connect two realistic weather states.
Gerd Schädler and Marcus Breil
Nonlin. Processes Geophys., 28, 231–245, https://doi.org/10.5194/npg-28-231-2021, https://doi.org/10.5194/npg-28-231-2021, 2021
Short summary
Short summary
We used regional climate networks (RCNs) to identify past heatwaves and droughts in Germany. RCNs provide information for whole areas and can provide many details of extreme events. The RCNs were constructed on the grid of the E-OBS data set. Time series correlation was used to construct the networks. Network metrics were compared to standard extreme indices and differed considerably between normal and extreme years. The results show that RCNs can identify severe and moderate extremes.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Jonathan M. Lilly and Paula Pérez-Brunius
Nonlin. Processes Geophys., 28, 181–212, https://doi.org/10.5194/npg-28-181-2021, https://doi.org/10.5194/npg-28-181-2021, 2021
Short summary
Short summary
Long-lived eddies are an important part of the ocean circulation. Here a dataset for studying eddies in the Gulf of Mexico is created through the analysis of trajectories of drifting instruments. The method involves the identification of quasi-periodic signals, characteristic of particles trapped in eddies, from the displacement records, followed by the creation of a measure of statistical significance. It is expected that this dataset will be of use to other authors studying this region.
Pascal Wang, Daniele Castellana, and Henk A. Dijkstra
Nonlin. Processes Geophys., 28, 135–151, https://doi.org/10.5194/npg-28-135-2021, https://doi.org/10.5194/npg-28-135-2021, 2021
Short summary
Short summary
This paper proposes two improvements to the use of Trajectory-Adaptive Multilevel Sampling, a rare-event algorithm which computes noise-induced transition probabilities. The first improvement uses locally linearised dynamics in order to reduce the arbitrariness associated with defining what constitutes a transition. The second improvement uses empirical transition paths accumulated at high noise in order to formulate the score function which determines the performance of the algorithm.
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021, https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
Short summary
An unprecedented amount of rainfall data is available nowadays, such as ensemble model output, weather radar estimates, and in situ observations from networks of both traditional and opportunistic sensors. Nevertheless, the exact amount of precipitation, to some extent, eludes our knowledge. The objective of our study is precipitation reconstruction through the combination of numerical model outputs with observations from multiple data sources.
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020, https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Short summary
Different dimension reduction methods may produce profoundly different low-dimensional representations of multiscale systems. We perform a set of case studies to investigate these differences. When a clear scale separation is present, similar bases are obtained using all methods, but when this is not the case some methods may produce representations that are poorly suited for describing features of interest, highlighting the importance of a careful choice of method when designing analyses.
Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier
Nonlin. Processes Geophys., 27, 411–427, https://doi.org/10.5194/npg-27-411-2020, https://doi.org/10.5194/npg-27-411-2020, 2020
Short summary
Short summary
Most verification metrics for ensemble forecasts assess the representation of uncertainty at a particular location and time. We study a new diagnostic tool based on fractions of threshold exceedance (FTE) which evaluates an additional important attribute: the ability of ensemble forecast fields to reproduce the spatial structure of observed fields. The utility of this diagnostic tool is demonstrated through simulations and an application to ensemble precipitation forecasts.
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020, https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary
Short summary
Accurate models of spatial, temporal, and inter-variable dependencies are of crucial importance for many practical applications. We review and compare several methods for multivariate ensemble post-processing, where such dependencies are imposed via copula functions. Our investigations utilize simulation studies that mimic challenges occurring in practical applications and allow ready interpretation of the effects of different misspecifications of the numerical weather prediction ensemble.
Jaqueline Lekscha and Reik V. Donner
Nonlin. Processes Geophys., 27, 261–275, https://doi.org/10.5194/npg-27-261-2020, https://doi.org/10.5194/npg-27-261-2020, 2020
Julian Steinheuer and Petra Friederichs
Nonlin. Processes Geophys., 27, 239–252, https://doi.org/10.5194/npg-27-239-2020, https://doi.org/10.5194/npg-27-239-2020, 2020
Short summary
Short summary
Many applications require wind gust estimates at very different atmospheric altitudes, such as in the wind energy sector. However, numerical weather prediction models usually only derive estimates for gusts at 10 m above the land surface. We present a statistical model that gives the hourly peak wind speed. The model is trained based on a weather reanalysis and observations from the Hamburg Weather Mast. Reliable predictions are derived at up to 250 m, even at unobserved intermediate levels.
Moritz N. Lang, Sebastian Lerch, Georg J. Mayr, Thorsten Simon, Reto Stauffer, and Achim Zeileis
Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020, https://doi.org/10.5194/npg-27-23-2020, 2020
Short summary
Short summary
Statistical post-processing aims to increase the predictive skill of probabilistic ensemble weather forecasts by learning the statistical relation between historical pairs of observations and ensemble forecasts within a given training data set. This study compares four different training schemes and shows that including multiple years of data in the training set typically yields a more stable post-processing while it loses the ability to quickly adjust to temporal changes in the underlying data.
Achim Wirth
Nonlin. Processes Geophys., 26, 457–477, https://doi.org/10.5194/npg-26-457-2019, https://doi.org/10.5194/npg-26-457-2019, 2019
Short summary
Short summary
The conspicuous feature of the atmosphere–ocean system is the large difference in the masses of the two media. In this respect there is a strong analogy to Brownian motion, with light and fast molecules colliding with heavy and slow Brownian particles. I apply the tools of non-equilibrium statistical mechanics for studying Brownian motion to air–sea interaction.
Carsten Abraham, Amber M. Holdsworth, and Adam H. Monahan
Nonlin. Processes Geophys., 26, 401–427, https://doi.org/10.5194/npg-26-401-2019, https://doi.org/10.5194/npg-26-401-2019, 2019
Short summary
Short summary
Atmospheric stably stratified boundary layers display transitions between regimes of sustained and intermittent turbulence. These transitions are not well represented in numerical weather prediction and climate models. A prototype explicitly stochastic turbulence parameterization simulating regime dynamics is presented and tested in an idealized model. Results demonstrate that the approach can improve the regime representation in models.
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Justin A. Schulte
Nonlin. Processes Geophys., 26, 91–108, https://doi.org/10.5194/npg-26-91-2019, https://doi.org/10.5194/npg-26-91-2019, 2019
Short summary
Short summary
Statistical hypothesis tests in wavelet analysis are used to asses the likelihood that time series features are noise. The choice of test will determine which features emerge as a signal. Tests based on area do poorly at distinguishing abrupt fluctuations from periodic behavior, unlike tests based on arclength that do better. The application of the tests suggests that there are features in Indian rainfall time series that emerge from background noise.
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 605–631, https://doi.org/10.5194/npg-25-605-2018, https://doi.org/10.5194/npg-25-605-2018, 2018
Short summary
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.
Adam H. Monahan
Nonlin. Processes Geophys., 25, 335–353, https://doi.org/10.5194/npg-25-335-2018, https://doi.org/10.5194/npg-25-335-2018, 2018
Short summary
Short summary
Bivariate probability density functions (pdfs) of wind speed characterize the relationship between speeds at two different locations or times. This study develops such pdfs of wind speed from distributions of the components, following a well-established approach for univariate distributions. The ability of these models to characterize example observed datasets is assessed. The mathematical complexity of these models suggests further extensions of this line of reasoning may not be practical.
Berenice Rojo-Garibaldi, David Alberto Salas-de-León, María Adela Monreal-Gómez, Norma Leticia Sánchez-Santillán, and David Salas-Monreal
Nonlin. Processes Geophys., 25, 291–300, https://doi.org/10.5194/npg-25-291-2018, https://doi.org/10.5194/npg-25-291-2018, 2018
Short summary
Short summary
Hurricanes are complex systems that carry large amounts of energy. Its impact produces, most of the time, natural disasters involving the loss of human lives and of materials and infrastructure that is accounted for in billions of US dollars. Not everything is negative as hurricanes are the main source of rainwater for the regions where they develop. In this study we make a nonlinear analysis of the time series obtained from 1749 to 2012 of the hurricane occurrence in the Gulf of Mexico.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 145–173, https://doi.org/10.5194/npg-25-145-2018, https://doi.org/10.5194/npg-25-145-2018, 2018
Short summary
Short summary
We develop a general framework for the frequency analysis of irregularly sampled time series. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. Our results generalize and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. All the analysis tools presented in this paper are available to the reader in the Python package WAVEPAL.
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 175–200, https://doi.org/10.5194/npg-25-175-2018, https://doi.org/10.5194/npg-25-175-2018, 2018
Short summary
Short summary
There is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework with the Morlet wavelet, based on the results of part I of this study. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
Valerie N. Livina, Albert Brouwer, Peter Harris, Lian Wang, Kostas Sotirakopoulos, and Stephen Robinson
Nonlin. Processes Geophys., 25, 89–97, https://doi.org/10.5194/npg-25-89-2018, https://doi.org/10.5194/npg-25-89-2018, 2018
Short summary
Short summary
We have applied tipping point analysis to a large record of ocean acoustic data to identify the main components of the acoustic dynamical system: long-term and seasonal trends, system states and fluctuations. We reconstructed a one-dimensional stochastic model equation to approximate the acoustic dynamical system. We have found a signature of El Niño events in the deep ocean acoustic data near the southwest Australian coast, which proves the investigative power of the tipping point methodology.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, https://doi.org/10.5194/npg-25-19-2018, 2018
Short summary
Short summary
We employ the Hilbert–Huang transform to study the temporal variability in time series of daily means of the surface solar irradiance (SSI) at different locations around the world. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency "weather noise", irrespective of the geographical location or of the local climate. Our findings can improve models for estimating SSI from satellite images or forecasts of the SSI.
Manfred Mudelsee and Miguel A. Bermejo
Nonlin. Processes Geophys., 24, 737–744, https://doi.org/10.5194/npg-24-737-2017, https://doi.org/10.5194/npg-24-737-2017, 2017
Short summary
Short summary
Risk analysis of extremes has high socioeconomic relevance. Of crucial interest is the tail probability, P, of the distribution of a variable, which is the chance of observing a value equal to or greater than a certain threshold value, x. Many variables in geophysical systems (e.g. climate) show heavy tail behaviour, where P may be rather large. In particular, P decreases with x as a power law that is described by a parameter, α. We present an improved method to estimate α on data.
Kathrin Padberg-Gehle and Christiane Schneide
Nonlin. Processes Geophys., 24, 661–671, https://doi.org/10.5194/npg-24-661-2017, https://doi.org/10.5194/npg-24-661-2017, 2017
Short summary
Short summary
Transport and mixing processes in fluid flows are crucially influenced by coherent structures, such as eddies, gyres, or jets in geophysical flows. We propose a very simple and computationally efficient approach for analyzing coherent behavior in fluid flows. The central object is a flow network constructed directly from particle trajectories. The network's local and spectral properties are shown to give a very good indication of coherent as well as mixing regions in the underlying flow.
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Jonathan M. Lilly, Adam M. Sykulski, Jeffrey J. Early, and Sofia C. Olhede
Nonlin. Processes Geophys., 24, 481–514, https://doi.org/10.5194/npg-24-481-2017, https://doi.org/10.5194/npg-24-481-2017, 2017
Short summary
Short summary
This work arose from a desire to understand the nature of particle motions in turbulence. We sought a simple conceptual model that could describe such motions, then realized that this model could be applicable to an array of other problems. The basic idea is to create a string of random numbers, called a stochastic process, that mimics the properties of particle trajectories. This model could be useful in making best use of data from freely drifting instruments tracking the ocean currents.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Cited articles
Abid, M. A., Almazroui, M., Kucharski, F., O'Brien, E., and Yousef, A. E.:
ENSO relationship to summer rainfall variability and its potential
predictability over Arabian Peninsula region, npj Climate and Atmospheric
Science, 1, 20171, https://doi.org/10.1038/s41612-017-0003-7, 2018.
Agarwal, A.: Unraveling spatio-temporal climatic patterns via multi-scale
complex networks, Universität Potsdam, 2019.
Agarwal, A., Maheswaran, R., Kurths, J., and Khosa, R.: Wavelet Spectrum and
Self-Organizing Maps-Based Approach for Hydrologic Regionalization – a Case
Study in the Western United States, Water Resour. Manag., 30,
4399–4413, https://doi.org/10.1007/s11269-016-1428-1, 2016.
Agarwal, A., Marwan, N., Rathinasamy, M., Merz, B., and Kurths, J.: Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach, Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, 2017.
Agarwal, A., Marwan, N., Maheswaran, R., Merz, B., and Kurths, J.:
Quantifying the roles of single stations within homogeneous regions using
complex network analysis, J. Hydrol.,
563, 802–810, https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018a.
Agarwal, A., Maheswaran, R., Marwan, N., Caesar, L., and Kurths, J.:
Wavelet-based multiscale similarity measure for complex networks,
Eur. Phys. J. B, 91, 296, https://doi.org/10.1140/epjb/e2018-90460-6, 2018b.
Agarwal, A., Caesar, L., Marwan, N., Maheswaran, R., Merz, B., and Kurths,
J.: Network-based identification and characterization of teleconnections on
different scales, Sci. Rep., 9, 8808, https://doi.org/10.1038/s41598-019-45423-5,
2019a.
Agarwal, A., Marwan, N., Ozturk, U., and Maheswaran, R.: Unfolding Community
Structure in Rainfall Network of Germany Using Complex Network-Based
Approach, in: Water Resources and Environmental Engineering II, edited by:
Rathinasamy, M., Chandramouli, S., Phanindra, K. B. V. N., and Mahesh, U.,
179–193, Springer Singapore, Singapore, 2019b.
Araghi, A., Mousavi-Baygi, M., Adamowski, J., and Martinez, C.: Association
between three prominent climatic teleconnections and precipitation in Iran
using wavelet coherence, Int. J. Climatol., 37,
2809–2830, https://doi.org/10.1002/joc.4881, 2017.
Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean dipole on
the relationship between the Indian monsoon rainfall and ENSO, Geophys.
Res. Lett., 28, 4499–4502, https://doi.org/10.1029/2001GL013294, 2001.
Bansod, S. D.: Interannual variability of convective activity over the
tropical Indian Ocean during the El Niño/La Niña events,
Int. J. Remote Sens., 32, 5565–5582,
https://doi.org/10.1080/01431161.2010.506896, 2011.
Behera, S. K., Krishnan, R., and Yamagata, T.: Unusual ocean-atmosphere
conditions in the tropical Indian Ocean during 1994, Geophys. Res.
Lett., 26, 3001–3004, https://doi.org/10.1029/1999GL010434, 1999.
Bharath, R. and Srinivas, V. V.: Delineation of homogeneous
hydrometeorological regions using wavelet-based global fuzzy cluster
analysis, Int. J. Climatol., 35, 4707–4727,
https://doi.org/10.1002/joc.4318, 2015.
Bhatla, R., Singh, A. K., Mandal, B., Ghosh, S., Pandey, S. N., and Sarkar,
A.: Influence of North Atlantic Oscillation on Indian Summer Monsoon
Rainfall in Relation to Quasi-Binneal Oscillation, Pure Appl.
Geophys., 173, 2959–2970, https://doi.org/10.1007/s00024-016-1306-z, 2016.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.: Fast
unfolding of communities in large networks, J. Stat. Mech.-Theory E., 2008, P10008,
https://doi.org/10.1088/1742-5468/2008/10/P10008, 2008.
Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and
Kurths, J.: Complex networks reveal global pattern of extreme-rainfall
teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019.
D'Arrigo, R.: On the variability of ENSO over the past six centuries,
Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL022055, 2005.
Ding, R., Kang, S., Vargas, R., Zhang, Y., and Hao, X.: Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region, Agr. Water Manag., 130, 79–89, https://doi.org/10.1016/j.agwat.2013.08.019, 2013.
Dong, X.: Influences of the Pacific Decadal Oscillation on the East Asian
Summer Monsoon in non-ENSO years: Influences of the Pacific Decadal
Oscillation on the East Asian Summer Monsoon, Atmos. Sci. Lett.,
17, 115–120, https://doi.org/10.1002/asl.634, 2016.
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in
climate dynamics: Comparing linear and nonlinear network construction
methods, The European Physical Journal Special Topics, 174, 157–179,
https://doi.org/10.1140/epjst/e2009-01098-2, 2009.
Ekhtiari, N., Agarwal, A., Marwan, N., and Donner, R. V.: Disentangling the
multi-scale effects of sea-surface temperatures on global precipitation: A
coupled networks approach, Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29, 063116, https://doi.org/10.1063/1.5095565, 2019.
Feliks, Y., Groth, A., Robertson, A. W., and Ghil, M.: Oscillatory Climate
Modes in the Indian Monsoon, North Atlantic, and Tropical Pacific, J.
Climate, 26, 9528–9544, https://doi.org/10.1175/JCLI-D-13-00105.1, 2013.
Feng, Q. Y., Vasile, R., Segond, M., Gozolchiani, A., Wang, Y., Abel, M., Havlin, S., Bunde, A., and Dijkstra, H. A.: ClimateLearn: A machine-learning approach for climate prediction using network measures, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2015-273, 2016.
Fortunato, S.: Community detection in graphs, Phys. Rep., 486,
75–174, https://doi.org/10.1016/j.physrep.2009.11.002, 2010.
Goswami, B. N. and Krishnan, R.: Opportunities and challenges in monsoon
prediction in a changing climate, Clim. Dynam., 41, 1–1,
https://doi.org/10.1007/s00382-013-1835-4, 2013.
Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., and Sengupta, D.: A
physical mechanism for North Atlantic SST influence on the Indian summer
monsoon, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL024803,
2006.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Guhathakurta, P., Menon, P., Inkane, P. M., Krishnan, U., and Sable, S. T.:
Trends and variability of meteorological drought over the districts of India
using standardized precipitation index, J. Earth Syst. Sci.,
126, 120, https://doi.org/10.1007/s12040-017-0896-x, 2017.
Guimerà, R. and Amaral, L. A. N.: Cartography of complex networks:
modules and universal roles, J. Stat. Mech.-Theory
E., 2005, P02001, https://doi.org/10.1088/1742-5468/2005/02/P02001, 2005.
Halverson, M. J. and Fleming, S. W.: Complex network theory, streamflow, and hydrometric monitoring system design, Hydrol. Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-3301-2015, 2015.
Hannachi, A., Jolliffe, I. T., and Stephenson, D. B.: Empirical orthogonal
functions and related techniques in atmospheric science: A review,
Int. J. Climatol., 27, 1119–1152,
https://doi.org/10.1002/joc.1499, 2007.
Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay,
R., Padmanabhan, K., and Samatova, N.: Community detection in large-scale
networks: a survey and empirical evaluation: Community detection in
large-scale networks, Wiley Interdisciplinary Reviews: Computational
Statistics, 6, 426–439, https://doi.org/10.1002/wics.1319, 2014.
Hu, Q. and Feng, S.: Interannual Rainfall Variations in the North American
Summer Monsoon Region: 1900–98*, J. Climate, 15, 1189–1202,
https://doi.org/10.1175/1520-0442(2002)015<1189:IRVITN>2.0.CO;2,
2002.
Hu, W. and Si, B. C.: Technical note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences, Hydrol. Earth Syst. Sci., 20, 3183–3191, https://doi.org/10.5194/hess-20-3183-2016, 2016.
Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S.K., Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T.: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño, Nat. Geosci., 3, 168–172, https://doi.org/10.1038/ngeo760, 2010.
Jiang, X. and Ting, M.: A Dipole Pattern of Summertime Rainfall across the
Indian Subcontinent and the Tibetan Plateau, J. Climate, 30,
9607–9620, https://doi.org/10.1175/JCLI-D-16-0914.1, 2017.
Katul, G., Lai, C.-T., Schäfer, K., Vidakovic, B., Albertson, J., Ellsworth, D., and Oren, R.: Multiscale analysis of vegetation surface fluxes: from seconds to years, Adv. Water Resour., 24, 1119–1132, https://doi.org/10.1016/S0309-1708(01)00029-X, 2011.
Krishnamurthy, L. and Krishnamurthy, V.: Teleconnections of Indian monsoon
rainfall with AMO and Atlantic tripole, Clim. Dynam., 46,
2269–2285, https://doi.org/10.1007/s00382-015-2701-3, 2016.
Krishnan, R. and Sugi, M.: Pacific decadal oscillation and variability of
the Indian summer monsoon rainfall, Clim. Dynam., 21, 233–242,
https://doi.org/10.1007/s00382-003-0330-8, 2003.
Krishnan, R. and Swapna, P.: Significant Influence of the Boreal Summer
Monsoon Flow on the Indian Ocean Response during Dipole Events, J.
Climate, 22, 5611–5634, https://doi.org/10.1175/2009JCLI2176.1, 2009.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M.:
Unraveling the Mystery of Indian Monsoon Failure During El Nino, Science,
314, 115–119, https://doi.org/10.1126/science.1131152, 2006.
Lancichinetti, A. and Fortunato, S.: Community detection algorithms: A
comparative analysis, Phys. Rev. E, 80,
056117, https://doi.org/10.1103/PhysRevE.80.056117, 2009.
Luo, J.-J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F.-F., Lukas, R.,
and Yamagata, T.: Interaction between El Niño and Extreme Indian Ocean
Dipole, J. Climate, 23, 726–742, https://doi.org/10.1175/2009JCLI3104.1,
2010.
Luterbacher, J., Xoplaki, E., Casty, C., Wanner, H., Pauling, A.,
Küttel, M., Rutishauser, T., Brönnimann, S., Fischer, E., Fleitmann,
D., Gonzalez-Rouco, F. J., García-Herrera, R., Barriendos, M., Rodrigo,
F., Gonzalez-Hidalgo, J. C., Saz, M. A., Gimeno, L., Ribera, P., Brunet, M.,
Paeth, H., Rimbu, N., Felis, T., Jacobeit, J., Dünkeloh, A., Zorita, E.,
Guiot, J., Türkes, M., Alcoforado, M. J., Trigo, R., Wheeler, D., Tett,
S., Mann, M. E., Touchan, R., Shindell, D. T., Silenzi, S., Montagna, P.,
Camuffo, D., Mariotti, A., Nanni, T., Brunetti, M., Maugeri, M., Zerefos,
C., Zolt, S. D., Lionello, P., Nunes, M. F., Rath, V., Beltrami, H.,
Garnier, E., and Ladurie, E. L. R.: Chapter 1 Mediterranean climate
variability over the last centuries: A review, in: Developments in Earth and
Environmental Sciences, 4, 27–148, Elsevier, 2006.
McGregor, S., Timmermann, A., England, M. H., Elison Timm, O., and Wittenberg, A. T.: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries, Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, 2013.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau
de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation
and atmospheric heat accumulation, Nat. Geosci., 7, 345–349,
https://doi.org/10.1038/ngeo2141, 2014.
Mishra, V., Smoliak, B. V., Lettenmaier, D. P., and Wallace, J. M.: A
prominent pattern of year-to-year variability in Indian Summer Monsoon
Rainfall, P. Natl. Acad. Sci. USA, 109,
7213–7217, https://doi.org/10.1073/pnas.1119150109, 2012.
Mitra, C., Kurths, J., and Donner, R. V.: Rewiring hierarchical scale-free
networks: Influence on synchronizability and topology, EPL-Europhys.
Lett., 119, 30002, https://doi.org/10.1209/0295-5075/119/30002, 2017.
Mokhov, I. I., Smirnov, D. A., Nakonechny, P. I., Kozlenko, S. S., and
Kurths, J.: Relationship between El-Niño/Southern Oscillation and the
Indian monsoon, Izvestiya, Atmos. Ocean. Phys., 48, 47–56,
https://doi.org/10.1134/S0001433812010082, 2012.
Newman, M. E. J.: Detecting community structure in networks, Eur.
Phys. J. B, 38, 321–330,
https://doi.org/10.1140/epjb/e2004-00124-y, 2004.
Newman, M. E. J.: Modularity and community structure in networks,
P. Natl. Acad. Sci. USA, 103, 8577–8582,
https://doi.org/10.1073/pnas.0601602103, 2006.
Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B.
T., Peters, D. C., and Fredrickson, E. L.: Do Changes in Connectivity Explain
Desertification?, BioScience, 59, 237–244, https://doi.org/10.1525/bio.2009.59.3.8,
2009.
Ouachani, R., Bargaoui, Z., and Ouarda, T.: Power of teleconnection patterns
on precipitation and streamflow variability of upper Medjerda Basin,
Int. J. Climatol., 33, 58–76, https://doi.org/10.1002/joc.3407,
2013.
Ozturk, U., Marwan, N., Korup, O., Saito, H., Agarwal, A., Grossman, M. J.,
Zaiki, M., and Kurths, J.: Complex networks for tracking extreme rainfall
during typhoons, Chaos: An Interdisciplinary Journal of Nonlinear Science,
28, 075301, https://doi.org/10.1063/1.5004480, 2018.
Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., and
Mukhopadyay, B.: Development of a new high spatial resolution
( ) Long Period (1901–2010) daily
gridded rainfall data set over India and its comparison with existing data
sets over the region, Mausam, 65, 1–18, 2014.
Pai, D. S., Sridhar, L., Badwaik, M. R., and Rajeevan, M.: Analysis of the
daily rainfall events over India using a new long period (1901–2010) high
resolution ( ) gridded rainfall
data set, Clim. Dynam., 45, 755–776,
https://doi.org/10.1007/s00382-014-2307-1, 2015.
Paluš, M.: Cross-Scale Interactions and Information Transfer, Entropy,
16, 5263–5289, https://doi.org/10.3390/e16105263, 2014.
Percival, D. B.: Analysis of Geophysical Time Series Using Discrete Wavelet
Transforms: An Overview, in: Nonlinear Time Series Analysis in the
Geosciences, vol. 112, edited by: Donner, R. V. and Barbosa, S. M., 61–79,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
Percival, D. B and Walden, A. T.: Wavelet methods for time series analysis, 4, Cambridge university press, 2000.
Peters, D. P. C., Pielke, R. A., Bestelmeyer, B. T., Allen, C. D.,
Munson-McGee, S., and Havstad, K. M.: Cross-scale interactions,
nonlinearities, and forecasting catastrophic events, P.
Natl. Acad. Sci. USA, 101, 15130–15135,
https://doi.org/10.1073/pnas.0403822101, 2004.
Peters, D. P. C., Bestelmeyer, B. T., and Turner, M. G.: Cross–Scale
Interactions and Changing Pattern–Process Relationships: Consequences for
System Dynamics, Ecosystems, 10, 790–796, https://doi.org/10.1007/s10021-007-9055-6,
2007.
Pillai, P. A. and Mohankumar, K.: Individual and combined influence of El
Niño-Southern Oscillation and Indian Ocean Dipole on the Tropospheric
Biennial Oscillation, Q. J. Roy. Meteor. Soc.,
136, 297–304, https://doi.org/10.1002/qj.579, 2010.
Quiroga, R. Q., Kreuz, T., and Grassberger, P.: Event synchronization: A
simple and fast method to measure synchronicity and time delay patterns,
Phys. Rev. E, 66, 041904-1, https://doi.org/10.1103/PhysRevE.66.041904, 2002.
Rai, P. and Dimri, A. P.: Effect of changing tropical easterly jet, low
level jet and quasi-biennial oscillation phases on Indian summer monsoon:
TEJ, LLJ and QBO phases and Indian summer monsoon, Atmos. Sci. Lett., 18, 52–59, https://doi.org/10.1002/asl.723, 2017.
Rajeevan, M. and Pai, D. S.: On the El Niño-Indian monsoon predictive
relationships, Geophys. Res. Lett., 34,
L04704, https://doi.org/10.1029/2006GL028916, 2007.
Rathinasamy, M., Khosa, R., Adamowski, J., ch, S., Partheepan, G., Anand, J.,
and Narsimlu, B.: Wavelet-based multiscale performance analysis: An approach
to assess and improve hydrological models, Water Resour. Res., 50,
9721–9737, https://doi.org/10.1002/2013WR014650, 2014.
Rubinov, M. and Sporns, O.: Weight-conserving characterization of complex
functional brain networks, NeuroImage, 56, 2068–2079,
https://doi.org/10.1016/j.neuroimage.2011.03.069, 2011.
Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., and Joshi, P. K.: Climate
change perception: an analysis of climate change and risk perceptions among
farmer types of Indian Western Himalayas, Climatic Change,
152, 103–119, https://doi.org/10.1007/s10584-018-2314-z, 2018.
Sivakumar, B., Singh, V. P., Berndtsson, R., and Khan, S. K.: Catchment
Classification Framework in Hydrology: Challenges and Directions, J.
Hydrol. Eng., 20, A4014002,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000837, 2015.
Steinhaeuser, K., Ganguly, A. R., and Chawla, N. V.: Multivariate and
multiscale dependence in the global climate system revealed through complex
networks, Clim. Dynam., 39, 889–895,
https://doi.org/10.1007/s00382-011-1135-9, 2012.
Tan, X., Gan, T. Y., and Shao, D.: Wavelet analysis of precipitation extremes
over Canadian ecoregions and teleconnections to large-scale climate
anomalies: Large Precipitation and Climate Anomalies, J. Geophys.
Res.-Atmos., 121, 14469–14486, https://doi.org/10.1002/2016JD025533,
2016.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis,
B. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2,
1998.
Tsonis, A. A., Swanson, K. L., and Roebber, P. J.: What Do Networks Have to
Do with Climate?, B. Am. Meteorol. Soc., 87,
585–595, https://doi.org/10.1175/BAMS-87-5-585, 2006.
Tsonis, A. A., Wang, G., Swanson, K. L., Rodrigues, F. A., and da Fontura Costa, L.: Community structure and dynamics in climate networks, Clim. Dynam.,
37, 933–940, https://doi.org/10.1007/s00382-010-0874-3, 2011.
Xoplaki, E., González-Rouco, J. F., Luterbacher, J., and Wanner, H.: Wet
season Mediterranean precipitation variability: influence of large-scale
dynamics and trends, Clim. Dynam., 23, 63–78, https://doi.org/10.1007/s00382-004-0422-0,
2004.
Zhang, R. and Delworth, T. L.: Simulated Tropical Response to a Substantial
Weakening of the Atlantic Thermohaline Circulation, J. Climate,
18, 1853–1860, https://doi.org/10.1175/JCLI3460.1, 2005.
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
We examined the spatial diversity of Indian rainfall teleconnection at different timescales,...