Articles | Volume 26, issue 3
Nonlin. Processes Geophys., 26, 251–266, 2019
https://doi.org/10.5194/npg-26-251-2019

Special issue: Centennial issue on nonlinear geophysics: accomplishments...

Nonlin. Processes Geophys., 26, 251–266, 2019
https://doi.org/10.5194/npg-26-251-2019
Research article
 | Highlight paper
15 Aug 2019
Research article  | Highlight paper | 15 Aug 2019

Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach

Jürgen Kurths et al.

Related authors

Spatio-temporal synchronization of heavy rainfall events triggered by atmospheric rivers in North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
EGUsphere, https://doi.org/10.5194/egusphere-2022-530,https://doi.org/10.5194/egusphere-2022-530, 2022
Short summary
Interacting tipping elements increase risk of climate domino effects under global warming
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021,https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021
Influence of extreme events modeled by Lévy flight on global thermohaline circulation stability
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31,https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Optimal design of hydrometric station networks based on complex network analysis
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020,https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022,https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022,https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary
Using neural networks to improve simulations in the gray zone
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022,https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary

Cited articles

Abid, M. A., Almazroui, M., Kucharski, F., O'Brien, E., and Yousef, A. E.: ENSO relationship to summer rainfall variability and its potential predictability over Arabian Peninsula region, npj Climate and Atmospheric Science, 1, 20171, https://doi.org/10.1038/s41612-017-0003-7, 2018. 
Agarwal, A.: Unraveling spatio-temporal climatic patterns via multi-scale complex networks, Universität Potsdam, 2019. 
Agarwal, A., Maheswaran, R., Kurths, J., and Khosa, R.: Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization – a Case Study in the Western United States, Water Resour. Manag., 30, 4399–4413, https://doi.org/10.1007/s11269-016-1428-1, 2016. 
Agarwal, A., Marwan, N., Rathinasamy, M., Merz, B., and Kurths, J.: Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach, Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, 2017. 
Agarwal, A., Marwan, N., Maheswaran, R., Merz, B., and Kurths, J.: Quantifying the roles of single stations within homogeneous regions using complex network analysis, J. Hydrol., 563, 802–810, https://doi.org/10.1016/j.jhydrol.2018.06.050, 2018a. 
Download
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.