Articles | Volume 26, issue 3
https://doi.org/10.5194/npg-26-211-2019
https://doi.org/10.5194/npg-26-211-2019
Research article
 | 
08 Aug 2019
Research article |  | 08 Aug 2019

Non-Gaussian statistics in global atmospheric dynamics: a study with a 10 240-member ensemble Kalman filter using an intermediate atmospheric general circulation model

Keiichi Kondo and Takemasa Miyoshi

Related authors

A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022,https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction
Juan Ruiz, Guo-Yuan Lien, Keiichi Kondo, Shigenori Otsuka, and Takemasa Miyoshi
Nonlin. Processes Geophys., 28, 615–626, https://doi.org/10.5194/npg-28-615-2021,https://doi.org/10.5194/npg-28-615-2021, 2021
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Amezcua, J., Ide, K., Bishop, C. H., and Kalnay, E.: Ensemble clustering in deterministic ensemble Kalman filters, Tellus, 64, 1–12, 2012. 
Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. 
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. 
Anderson, J. L.: A non-Gaussian ensemble filter update for data assimilation, Mon. Weather Rev., 138, 4186–4198, 2010. 
Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter, Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001. 
Download
Short summary
This study investigates non-Gaussian statistics of the data from a 10240-member ensemble Kalman filter. The large ensemble size can resolve the detailed structures of the probability density functions (PDFs) and indicates that the non-Gaussian PDF is caused by multimodality and outliers. While the outliers appear randomly, large multimodality corresponds well with large analysis error, mainly in the tropical regions and storm track regions where highly nonlinear processes appear frequently.