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Abstract. We previously performed local ensemble trans-
form Kalman filter (LETKF) experiments with up to 10 240
ensemble members using an intermediate atmospheric gen-
eral circulation model (AGCM). While the previous study
focused on the impact of localization on the analysis accu-
racy, the present study focuses on the probability density
functions (PDFs) represented by the 10 240-member ensem-
ble. The 10 240-member ensemble can resolve the detailed
structures of the PDFs and indicates that non-Gaussianity is
caused in those PDFs by multimodality and outliers. The re-
sults show that the spatial patterns of the analysis errors are
similar to those of non-Gaussianity. While the outliers appear
randomly, large multimodality corresponds well with large
analysis error, mainly in the tropical regions and storm track
regions where highly nonlinear processes appear frequently.
Therefore, we further investigate the life cycle of multimodal
PDFs, and show that they are mainly generated by the on–
off switch of convective parameterization in the tropical re-
gions and by the instability associated with advection in the
storm track regions. Sensitivity to the ensemble size suggests
that approximately 1000 ensemble members are necessary in
the intermediate AGCM-LETKF system to represent the de-
tailed structures of non-Gaussian PDFs such as skewness and
kurtosis; the higher-order non-Gaussian statistics are more
vulnerable to the sampling errors due to a smaller ensemble
size.

1 Introduction

Data assimilation is a statistical approach to estimate a pos-
terior probability density function (PDF) using information
from a prior PDF and observations. Based on the posterior
PDF estimate, the optimal initial state is given for numer-
ical weather prediction (NWP). The ensemble Kalman fil-
ter (EnKF; Evensen, 1994) is an ensemble data assimilation
method based on the Kalman filter (Kalman, 1960) and ap-
proximates the background error covariance matrix by an en-
semble of forecasts. The EnKF can explicitly represent the
PDF of the model state, where the ensemble size is essen-
tial because the sampling error contaminates the PDF rep-
resented by the ensemble. Although the sampling error is
reduced by increasing the ensemble size, the EnKF is usu-
ally performed with a limited ensemble size up to O(100)
due to the high computational cost of ensemble model runs.
Recently, EnKF experiments with a large ensemble have
been performed using powerful supercomputers. Miyoshi et
al. (2014; hereafter MKI14) implemented a 10 240-member
EnKF with an intermediate atmospheric general circulation
model (AGCM) known as the Simplified Parameterizations,
Primitive Equation Dynamics model (SPEEDY; Molteni,
2003), and found meaningful long-range error correlations.
In addition, they reported that sampling errors in the error
correlation were reduced by increasing the ensemble size.
Further, Miyoshi et al. (2015) assimilated real atmospheric
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observations with a realistic model known as the Nonhy-
drostatic Icosahedral Atmospheric Model (NICAM; Tomita
and Satoh, 2004; Satoh et al., 2008, 2014) using an EnKF
with 10 240 members. Kondo and Miyoshi (2016; hereafter
KM16) investigated the impact of covariance localization
on the accuracy of analysis using a modified version of the
MKI14 system.

MKI14 also focused on the PDF and reported strong non-
Gaussianity, such as a bimodal PDF. Previous studies inves-
tigated the impact of non-Gaussianity on the EnKF. Ander-
son (2010) reported that an N -member ensemble could con-
tain an outlier and a cluster of N -1 ensemble members under
nonlinear scenarios using the ensemble adjustment Kalman
filter (EAKF; Anderson, 2001). Anderson (2010) called this
phenomenon ensemble clustering (EC), and it leads to a
degradation of analysis accuracy. Amezcua et al. (2012) in-
vestigated EC with the ensemble transform Kalman filter
(ETKF; Bishop et al., 2001) and local ensemble transform
Kalman filter (LETKF; Hunt et al., 2007), and found that
random rotations of the ensemble perturbations could avoid
EC. Posselt and Bishop (2012) explored the non-Gaussian
PDF of microphysical parameters using an idealized one-
dimensional (1-D) model of deep convection and showed that
the non-Gaussianity of the parameter was generated by non-
linearity between the parameters and model output.

Using the precious dataset of KM16 with 10 240 ensem-
ble members, we can carry out various investigations such
as non-Gaussian statistics and sampling errors in the back-
ground error covariance. Here we focus on the non-Gaussian
statistics in this study. As the Gaussian assumption makes
the minimum variance estimator of the EnKF coincide with
the maximum likelihood estimator, the non-Gaussian PDF
may have some negative impacts on the LETKF analysis.
KM16 showed that the improvement in the tropics was rel-
atively small by increasing the ensemble size up to 10 240,
and suggested that the small improvement was related to the
convectively dominated tropical dynamics. This study aims
to investigate the non-Gaussian statistics of the atmospheric
dynamics in more detail to explore the relationship between
the analysis error and the non-Gaussian PDF, as well as the
behavior and life cycle of the non-Gaussian PDF. To the best
of the authors’ knowledge, this is the first study investigat-
ing the non-Gaussian PDF using a 10 240-member ensem-
ble of an intermediate AGCM. This study also discusses how
many ensemble members are necessary to represent a non-
Gaussian PDF without contamination due to the sampling
error, as higher-order non-Gaussian statistics are generally
more vulnerable to the sampling error due to a limited en-
semble size. This paper is organized as follows: Section 2
describes measures for the non-Gaussian PDF; Section 3 de-
scribes experimental settings; Sect. 4 presents the results; and
a summary and discussions are provided in Sect. 5.

2 Non-Gaussian measures

Sample skewness β1/2
1 and sample excess kurtosis β2 are

well-known parametric properties of a non-Gaussian PDF,
and are defined as follows:
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where xi and x denote the ith ensemble member and N -
member ensemble mean, respectively; σ denotes the sam-

ple standard deviation, i.e., σ =
√

1
N−1

∑N
i=1(xi − x)

2; and

skewness β1/2
1 represents the asymmetry of the PDF. Positive

(negative) skewness β1/2
1 corresponds to the PDF with the

longer tail on the right (left) side. Positive (negative) kurto-
sis β2 corresponds to the PDF with a more pointed (rounded)
peak and longer (shorter) tails on both sides. When the PDF
is Gaussian, both skewness β1/2

1 and kurtosis β2 go to zero
in the limit of infinite sample size. In addition, we also use
Kullback–Leibler divergence (KL divergence; Kullback and
Leibler, 1951) from the Gaussian PDF. KL divergence is a di-
rect measure of the difference between two PDFs. Let p(x)
and q(x) be two PDFs. The KL divergenceDKL between the
two PDFs is defined as

DKL =

∫
p(x) log

p(x)

q (x)
dx. (3)

Here, we obtain p(x) from the histogram based on the en-
semble, and q(x) from the theoretical Gaussian function with
the ensemble mean x and standard deviation σ , respectively.
DKL measures the difference between the ensemble-based
histogram and the fitted Gaussian function. Figure 1 shows
examples of ensemble-based histograms and corresponding
skewness β1/2

1 , kurtosis β2, and KL divergence DKL with
10 240 samples. Here, the Scott’s choice method (Scott,
1979) is applied to decide the bin width for histograms. The
histogram with KL divergence DKL = 0.01 looks approxi-
mately Gaussian, whereas the other three histograms with
larger DKL values show significant discrepancies from the
Gaussian function. The skewness and kurtosis measure the
degrees of symmetry and “tailedness”, respectively, whereas
the KL divergence DKL is more suitable for measuring the
degrees of difference between a given PDF and the fitted
Gaussian function. Based on the subjective observation of
Fig. 1, hereafter, the PDF is considered to be non-Gaussian
when DKL > 0.01.

A non-Gaussian PDF can also be caused by outliers. Al-
though detailed results are shown in Sect. 4, one or sev-
eral ensemble members are detached from the main clus-
ter; this also results in the large KL divergence DKL, as well
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Figure 1. Ensemble-based histograms with 10 240 ensemble mem-
bers when the Kullback–Leibler (KL) divergenceDKL = (a) 0.010,
(b) 0.025, (c) 0.050, and (d) 0.100. Solid lines indicate fitted Gaus-
sian functions. Skewness (Skew) and kurtosis (Kurt) are also shown
in the figure.

Figure 2. Histograms of background temperature (K) at the fourth
model level (∼ 500 hPa) at (a) grid point A (16.7◦ S, 90.0◦ E),
(b) grid point B (35.3◦ N, 146.3◦ E), and (c) grid point C (35.3◦ N,
112.5◦W). The yellow star shows the truth.

as large skewness and kurtosis, shown in Fig. 2b. We tested
two outlier detection methods: the standard deviation-based
method (SD method) and the local outlier factor method
(LOF method; Breunig et al., 2000). Here, univariate PDFs
are considered, so that SD and LOF methods are computed
for each variable at each grid point separately.

In the SD method, the ensemble members beyond a pre-
scribed threshold in the unit of SD are defined as outliers.
If we make 10 240 independent random draws from a Gaus-

sian PDF, statistically 27.6, 0.65, and 0.0059 samples (0.270,
0.00633, and 0.0000573 %) are expected beyond the ±3σ ,
±4σ , and±5σ thresholds, respectively. Hence, using thresh-
old of ±3σ , we would expect to detect 27.6 outliers at every
grid point; with the ±4σ threshold, we would expect to de-
tect 1.3 outliers in two grid points (20 480 random draws);
with the ±5σ threshold, we would expect to detect 1.18 out-
liers in 200 grid points (2 048 000 random draws). As outliers
appear frequently with ±3σ and ±4σ thresholds, we choose
the ±5σ threshold for the SD method in this study.

Unlike the SD method, the LOF method is based on the lo-
cal density, not on the distance from the sample mean. For a
given two-dimensional dataset D, let d(p, o) denote the dis-
tance between two objects p ∈D and o ∈D. For any positive
integer k, define k-distance(p) to be the distance between the
object p and the kth nearest neighbor. The k-distance neigh-
borhood of p, or simply Nk(p), is defined as the k nearest
objects:

Nk(p)= {q ∈D|q 6= p,d(p,q)≤ k-distance(p)} (4)

The cardinality of Nk(p), or |Nk(p)|, is greater than or equal
to the number of objects (except for the object p itself) within
k-distance(p). We define the “reachability distance” of p
with respect to the object o as

reach-distk(p,o)=max{k-distance(o),d(p,o)} (5)

That is, if the object p is sufficiently distant from object
o, reach-distk(p,o) is d(p,o). If they are close enough to
each other, reach-distk(p,o) is replaced by k-distance(o)
instead of d(p,o). Figure 3 shows a schematic diagram
of reach-distk(p,o) with k = 3. Nk(p) includes o1, o2, o3,
and o4, and |Nk(p)| is 4. In Fig. 3a, reach-distk(p,o1) is
k-distance(o1)= d(o1,o4) because k-distance(o1) is greater
than d(p,o1). In contrast, in Fig. 3b, reach-distk(p,o1) is
d(p,o1). We further define the “local reachability density” of
p, or simply lrdk(p), as the inverse of the average of reacha-
bility distance of p:

lrdk (p)=
|Nk (p)|∑

o∈Nk(p)

reach-distk (p,o)
. (6)

Finally, the local outlier factor of p, denoted as LOFk(p), is
defined as

LOFk (p)=

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk (p)|
. (7)

Given a lower local reachability density of p and a higher lo-
cal reachability density of p’s k-nearest neighbors, LOFk(p)
becomes higher. LOFk(p) or simply LOF is approximately 1
for an object deep within a cluster, and LOF becomes larger
around the edge of the cluster due to sparse objects on the far
side of the cluster. To summarize, the LOF method focuses
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Figure 3. Schematic diagrams of reach-distk(p,o) with k = 3 for
(a) uniformly distributed data and (b) data with an asymmetrical
distribution.

on the local densities of objects, and outliers are detected
by comparing the local densities. For instance, when k = 3
in Fig. 3a, the local densities of the objects p and o1,2,3,4,5
all have similar values because the k-distance(p) is similar
to the k-distances(o1,2,3,4,5). Therefore, they are not iden-
tified as outliers. In contrast, in Fig. 3b the object p has a
smaller local density than the other objects o1,2,3,4,5 because
k-distance(p) > k-distances(o1,2,3,4,5). Therefore, the object
p has a larger LOF and is identified as an outlier. An ob-
ject with a LOF much larger than 1 may be categorized as an
outlier, but it is not clear how to determine the threshold for
outliers because the threshold also depends on the dataset.
The threshold of LOF is chosen to be 8.0 in this study, and
Sect. 4 shows the results with different threshold values and
discusses why we choose this specific value. k is a control pa-
rameter for the LOF method and depends on the dataset, as
shown by Breunig et al. (2000), who suggested that choosing
a k value from 10 to 20 works well for most of the datasets.
If we choose a k value that is too small, some objects deeply
inside a cluster have a large LOF, and the LOF method does
not work. In fact, using the dataset of KM16, k = 10 showed
this problem, whereas k = 20 did not. Therefore, we chose
k = 20 in this study. Similar to the SD method, the LOF
method is applied to a one-dimensional dataset consisting of
10 240 ensemble members.

The statistics of the KL divergence, and the SD and LOF
methods with 10 240 samples are evaluated numerically with
1 million trials of 10 240 random draws from the standard
normal distribution by the Box–Muller method (Box and
Muller, 1958). The results show that the expected value of
KL divergence DKL is 0.0025, and its standard deviation is
0.00048. As for outlier detections, 5767 and 16 088 trials
have at least one outlier for the SD and LOF methods, re-
spectively. Thus, the probabilities to detect at least one out-
lier at a grid point are 0.58 % for the SD method and 1.6 %
for the LOF method. Here, the threshold for the SD method

is ±5σ . For the LOF method, we choose k = 20 and, as dis-
cussed below in Sect. 4, the threshold value LOF is equal to
8.0.

3 Experimental settings

We use the 10 240-member global atmospheric analysis data
from an idealized LETKF experiment of KM16. That is, the
experiment was performed with the SPEEDY-LETKF system
(Miyoshi, 2005) consisting of the SPEEDY model (Molteni,
2003) and the LETKF (Hunt et al., 2007; Miyoshi and Ya-
mane, 2007). The SPEEDY model is an intermediate AGCM
based on the primitive equations at T30/L7 resolution, which
corresponds to 96×48 grid points in the horizontal and seven
levels in the vertical, and has simplified forms of physi-
cal parametrization schemes including large-scale conden-
sation, cumulus convection (Tiedtke, 1993), clouds, short-
and long-wave radiation, surface fluxes, and vertical diffu-
sion. Due to the very low computational cost, the SPEEDY
model has been used in many studies on data assimilation
(e.g., Miyoshi, 2005; Greybush et al., 2011; Miyoshi, 2011;
Amezcua et al., 2012; Miyoshi and Kondo, 2013; Kondo et
al., 2013; MKI14; KM16).

The LETKF applies the ETKF (Bishop et al., 2001) al-
gorithm to the local ensemble Kalman filter (LEKF; Ott et
al., 2004). The LETKF can assimilate observations at every
grid point independently, which is particularly advantageous
in high-performance computation. In fact, Miyoshi and Ya-
mane (2007) showed that the parallelization ratio reached
99.99 % on the Japanese Earth Simulator supercomputer, and
KM16 performed 10 240-member SPEEDY-LETKF experi-
ments within 5 min for one execution of LETKF, not includ-
ing the forecast part on 4608 nodes of the Japanese K super-
computer. The LETKF is computed as follows. Let X (δX)
denote an n×m matrix, where the columns are composed of
m ensemble members (deviations from the mean of the en-
semble) with the system dimension n. The superscripts a and
f denote the analysis and forecast, respectively. The analysis
ensemble Xa is written as

Xa
= xf 1+ δXf

[
P̃a(HδXf )TR−1

(
yo−Hxf

)
1

+
√
m− 1

(̃
Pa)1/2] (8)

(cf. Eqs. (6) and (7) of Miyoshi and Yamane, 2007). Here,
xf , yo, H, and R denote the background ensemble mean, ob-
servations, linear observation operator, and observation error
covariance matrix, respectively. 1 is an m-dimensional row
vector with all elements being 1. The m×m analysis error
covariance matrix P̃a in the ensemble space is given as

P̃a
=

[
(m− 1)I/ρ+ (HδXf )T R−1(HδXf )

]−1
= UD−1UT (9)

(cf. Eqs. (3) and (9) of Miyoshi and Yamane, 2007). Here, ρ
denotes the covariance inflation factor. As P̃a is real symmet-
ric, U is composed of the orthonormal eigenvectors, such that
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UUT = I. The diagonal matrix D is composed of the nonneg-
ative eigenvalues.

KM16 performed a perfect-model twin experiment for
60 d from 00:00 UTC on 1 January in the second year of
the nature run, which was initiated at 00:00 UTC on 1 Jan-
uary from the standard atmosphere at rest (zero wind). The
first year of the nature run was discarded as spin-up. To re-
solve detailed PDF structures, the ensemble size was fixed to
10 240. No localization was applied, yielding the best analy-
sis accuracy as shown by KM16, who compared five 10 240-
member experiments with different choices of localization:
step functions with 2000, 4000, and 7303 km localization
radii, a Gaussian function with a 7303 km localization radius,
and no localization. The observations for horizontal wind
components (U , V ), temperature (T ), specific humidity (Q),
and surface pressure (Ps) were simulated by adding obser-
vational errors to the nature run every 6 h at radiosonde-like
locations (see Fig. 8, crosses) for all seven vertical levels, but
the observations of specific humidity were simulated from
the bottom to the fourth model level (about 500 hPa). The ob-
servational errors were generated from independent Gaussian
random numbers, and the observational error standard devi-
ations were fixed at 1.0 m s−1, 1.0 K, 0.1 g kg−1, and 1.0 hPa
for U/V , T , Q, and Ps, respectively.

The non-Gaussian measures, skewness β1/2
1 , kurtosis β2,

and KL divergenceDKL, are calculated at each grid point for
each variable. Outliers are diagnosed similarly at each grid
point for each variable with the SD method and LOF method.

4 Results

Figure 4 shows the spatial distributions of the analysis ab-
solute error, ensemble spread, background skewness β1/2

1 ,
kurtosis β2, and KL divergence DKL for temperature at the
fourth model level (∼ 500 hPa) at 06:00 UTC on 22 Febru-
ary. When the analysis absolute error is large, the background
non-Gaussian measures also tend to be large, especially in
the tropics. The peaks for skewness β1/2

1 , kurtosis β2, and
KL divergence DKL tend to coincide. Although grid point A
(16.7◦ S, 90.0◦ E) has a large KL divergence DKL with large
analysis absolute error, at grid point B (35.3◦ N, 146.3◦ E)
with a large KL divergenceDKL the analysis absolute error is
small (< 0.08 K). This result shows that the large analysis er-
ror is not always associated with the strong non-Gaussianity
at a specific time. The PDFs at grid points A and B are shown
in Fig. 2a and b, respectively. The histogram at grid point A
is clearly a multimodal PDF with KL divergenceDKL > 0.01,
and the right mode captures the truth (yellow star). At grid
point B, although the PDF seems to be closer to Gaussian,
skewness β1/2

1 and kurtosis β2 are much larger than those
at grid point A. In fact, the PDF does not fit to the Gaus-
sian function calculated by the ensemble mean and standard
deviation. Zooming in on the left side of Fig. 2b shows a
small cluster composed of 76 members detached from the

main cluster; 74 members of the small cluster exceed −5σ
and are categorized as outliers in the SD method. This small
cluster causes the standard deviation to become large and re-
sults in the Gaussian function having a longer tail than the
histogram. The small cluster should not be considered as con-
sisting of outliers because it may have some physical signifi-
cance. Scatter diagrams of LOF versus distance from the en-
semble mean for all ensemble members at grid points A and
B are shown in Fig. 5a and b, respectively. At grid point A,
the LOF is not that large, even at the edge of the cluster (< 4),
and the multimodal PDF does not influence the LOF. In ad-
dition, all members are within ±3σ . Therefore, there are no
clear outliers at grid point A. At grid point B, although most
of the small cluster exceeds −5σ , the maximum LOF in the
small cluster is still smaller than 3. This indicates that all
members of the small cluster should not be outliers in the
LOF method. As an outlier case, we note the grid point C
(35.3◦ N, 112.5◦W) in Fig. 4. The PDF at the grid point C fits
the Gaussian function well, and the non-Gaussian measures
are quite small (Fig. 2c). A member on the left edge of the
scatter diagram in Fig. 5c has the largest LOF > 8.0, but the
member is within ±3σ . As mentioned in Sect. 2, the thresh-
old of the LOF for outliers depends on the dataset. Figure 6
shows the number of outliers for thresholds of 5.0, 8.0, and
11.0 at 06:00 UTC on 22 February. There are too many out-
liers with a threshold of 5.0; however, the number of outliers
decreases markedly with thresholds of 8.0 or 11.0. Based on
these results, and as already mentioned in Sect. 2, we adopt
a LOF of 8.0 as a threshold for outliers.

Figure 7 shows the spatial distributions of the time-mean
analysis RMSE, the ensemble spread, the background ab-
solute skewness β1/2

1 , the absolute kurtosis β2, and the KL
divergence DKL. As mentioned in KM16, the time-mean
ensemble spread corresponds well to the RMSE, which is
larger in the tropics. The pattern correlation between the
RMSE and ensemble spread is 0.97. Moreover, the distri-
butions of non-Gaussian measures are similar to each other
and also correspond well to the RMSE and ensemble spread.
The RMSE and non-Gaussian measures differ in that the
non-Gaussianity is large in storm tracks, such as the North
Pacific Ocean and the North Atlantic Ocean. This may be
because the LETKF inhibits growing errors well in storm
tracks regardless of the strong non-Gaussianity. To investi-
gate the non-Gaussianity in more detail, Figs. 8 and 9 show
the frequencies of non-Gaussian PDF with high KL diver-
gence DKL > 0.01 and the frequencies identifying at least
one outlier with high LOF > 8.0 on a 10 240-member en-
semble, respectively. The frequency of non-Gaussian PDF is
defined as the ratio of non-Gaussianity appearance at every
grid point during the 36 d period from 00:00 UTC on 25 Jan-
uary to 18:00 UTC on 1 March. The spatial distribution of
the frequency of non-Gaussianity for temperature is similar
to that of the time-mean RMSE and DKL (Figs. 7a, e, 8b),
and the pattern correlation between the spatial distribution of
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Figure 4. Spatial distributions of (a) analysis absolute error,
(b) analysis ensemble spread, (c) background skewness, (d) back-
ground kurtosis, and (e) background KL divergence for temperature
at the fourth model level (∼ 500 hPa) at 06:00 UTC on 22 February.
Contours indicate geopotential height of the ensemble mean at the
500 hPa level.

the mean RMSE and DKL is 0.68. We find a high frequency
of non-Gaussian PDFs in the tropics and storm track regions
for temperature, specific humidity, and surface pressure, al-
though non-Gaussian PDFs seldom appear in the densely
observed regions. In the tropics, the frequency reaches up
to 90 %, and in South America the frequency reaches the
highest value of over 95 %, i.e., the non-Gaussian PDF ap-
pears for 34 d out of 36 d. In contrast, the non-Gaussian PDF
for zonal wind hardly appears (Fig. 8a), and the intensity of
the non-Gaussianity, as evaluated by other measures, is also
weak (not shown). Conversely, the outliers appear almost
randomly and do not clearly depend on the region for any
of the variables (Fig. 9); most outliers also disappear within
only one or a few analysis steps. Moreover, there are no cor-
relations between the frequency of outliers and the analysis
RMSE.

To investigate how the non-Gaussian PDF is generated,
we plot the forecast and analysis update processes at 1.9◦ N,
168.7◦ E for 256 members chosen randomly from 10 240
members from the analysis at 00:00 UTC on 9 February
(157th analysis cycle) to the forecast at 00:00 UTC on

Figure 5. Scatter diagrams of the local outlier factor (LOF) method
versus distance from the ensemble mean for all ensemble members
for background temperature at the fourth model level (∼ 500 hPa)
at (a) grid point A (16.7◦ S, 90.0◦ E), (b) grid point B (35.3◦ N,
146.3◦ E), and (c) grid point C (35.3◦ N, 112.5◦W).

10 February (161st analysis cycle, Fig. 10a). That is, Fig. 10a
shows the life cycle of the non-Gaussian PDF. As the y axis,
we introduce the convective instability dθe, which is defined
as a difference between equivalent potential temperature θe
at the fourth model level (∼ 500 hPa) and θe at the sec-
ond model level (∼ 850 hPa). Negative (positive) dθe indi-
cates a convectively unstable (stable) atmosphere. The non-
Gaussian PDF appears in the background at the 159th cycle
(12:00 UTC, 9 February), and the model forecast increases
the KL divergence DKL for dθe up to 0.154 with a bimodal
PDF of clusters A and B. We find many lines crossing in the
forecast step from the analyses at the 158th cycle to the back-
ground at the 159th cycle. Thus, many of the upper side clus-
ter A at the 159th cycle come from the lower side analyses
in the previous 158th cycle, generally reducing the instabil-
ity (increasing values of dθe) in the forecast step, and vice
versa for the lower side cluster B. In the background tem-
perature at the fourth model level, the KL divergence DKL
also increases from 0.003 to 0.299 for 6 h (Fig. 10b, c). Fi-
nally, the non-Gaussian PDF almost disappears at the 161st
cycle (00:00 UTC, 10 February). Figure 11 shows a scatter
diagram of 06:00 UTC versus 12:00 UTC on 9 February for
background temperature in the fourth model level for each
member at 1.9◦ N, 168.7◦ E, and also shows histograms cor-
responding to the scatter diagrams. The PDF at 06:00 UTC
is almost Gaussian. However, at 12:00 UTC, the bimodal
structure with KL divergence DKL = 0.299 appears. The
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Figure 6. Spatial distributions of the number of outliers for
background temperature at the fourth model level (∼ 500 hPa) at
06:00 UTC on 22 February for LOF thresholds of (a) 5.0, (b) 8.0,
and (c) 11.0.

dot colors show dθ ′e evaluated from 06:00 to 12:00 UTC on
9 February, namely, dθ ′e = (dθe 12:00 UTC− dθe 06:00 UTC)−(
dθe 12:00 UTC− dθe 06:00 UTC

)
, where θe indicates the equiv-

alent potential temperature calculated from the ensemble
mean. That is, a red (blue) dot shows more stability (in-
stability) than the ensemble mean. The red and blue dots
are clearly divided into the right and left side modes, re-
spectively. Most members with mitigated (enhanced) insta-
bility move to the right (left) side mode. The members with
larger (smaller) temperature values at 12:00 UTC correspond
to larger (smaller) values of stability as shown by the warmer
(colder) color. In addition, both right and left modes corre-
spond to the opposite side modes in the specific humidity,
respectively (not shown). That is, the members with higher
(lower) temperature have lower (higher) humidity than the
ensemble mean. The instability is driven by precipitation.
Figure 12 is similar to Fig. 11, but for precipitation. The
10 240 members are clearly divided into three clusters at
12:00 UTC by the instability. The three clusters indicate the
number of times cumulus parameterization is triggered. Most
members in the right (left) cluster are red (blue) and show
mitigation (enhancement) of the instability. Figure 13 is also

Figure 7. Spatial distributions of the time-mean (a) analysis RMSE,
(b) analysis ensemble spread, (c) background absolute skewness,
(d) background absolute kurtosis, and (e) background KL diver-
gence for temperature at the fourth model level (∼ 500 hPa) from
00:00 UTC on 25 January to 18:00 UTC on 1 March.

similar to Fig. 11, but for zonal wind at the fourth model
level. In agreement with what has been seen on Fig. 8a,
the non-Gaussianity of zonal wind is weak, and the bimodal
structure appearing in temperature and humidity seldom af-
fects the PDF of zonal wind. We found no relationship be-
tween the atmospheric instability and zonal wind. Therefore,
the genesis of non-Gaussian PDF in the tropics is deeply re-
lated to precipitation process, which is driven by convective
instability through cumulus parameterization in the SPEEDY
model. As a result, the precipitation process mitigates the in-
stability, with rising temperature and decreasing humidity.
Similar results are generally obtained at other grid points
with non-Gaussian PDF.

In the extratropics, non-Gaussian PDF is generated dif-
ferently. To investigate the genesis of non-Gaussian PDF in
the extratropics, we focus on a case around an extratropical
cyclone over the Atlantic Ocean. A non-Gaussian PDF ap-
pears at 06:00 UTC on 15 February at 42.7◦ N, 48.8◦W, and
the KL divergenceDKL of background temperature increases
from 0.003 to 0.460 (Fig. 14, crosses). Figure 15 is similar
to Fig. 11, but for background specific humidity at the sec-
ond model level (∼ 850 hPa) versus precipitation at 42.7◦ N,
48.8◦W at 00:06 UTC on 15 February. Trimodal PDFs ap-
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Figure 8. Spatial distributions of the frequency of the non-Gaussian PDF with high KL divergence DKL > 0.01 for (a) zonal wind at the
fourth model level, (b) temperature at the fourth model level, (c) specific humidity at the lowest model level, and (d) surface pressure. The
frequency is defined as a ratio of high KL divergenceDKL appearance from 00:00 UTC on 25 January to 18:00 UTC on 1 March. The crosses
indicate the radiosonde-like locations.

Figure 9. Similar to Fig. 8, but showing the frequency of identifying at least one outlier with high a LOF > 8.0 on a 10 240-member ensemble.

pear in both specific humidity and precipitation. The three
modes of specific humidity are clearly separated by the color,
i.e., instability dθ ′e: modes with larger humidity have colder
colors (smaller dθ ′e corresponding to more instability). How-
ever, the three modes of precipitation show no clear depen-
dence on dθ ′e. Therefore, the trimodal PDF of specific hu-
midity would not be driven by the cumulus parameterization.
Next, the relationship between background specific humidity
and meridional wind at the second model level (∼ 850 hPa)

is shown in Fig. 16. The members in the left mode have lower
specific humidity with relatively stronger northerly wind.
If we look at the fourth model level (∼ 500 hPa) for these
members with lower humidity, they have relatively weaker
northerly wind and warm temperature (not shown). Thus, in-
stabilities are mitigated by the northerly advection of dry air
in the lower troposphere and by warm temperature in the mid
troposphere. In this case study, the non-Gaussianity genesis
in the extratropics is associated with the advections. This is
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Figure 10. Life cycle of non-Gaussianity at 1.9◦ N, 168.7◦ E.
(a) Trajectories of 256 randomly chosen members from 10 240
members for dθe (see text for definition) from an analysis at the
157th analysis cycle (00:00 UTC, 9 February) to forecast the 161st
analysis cycle (00:00 UTC, 10 February). The colors show the or-
der of dθe for every analysis. DKL shows KL divergence for dθe,
and the superscripts a and f indicate analysis and forecast, respec-
tively. (b, c) Spatial distributions of KL divergence for background
temperature at the fourth model level (∼ 500 hPa) at the 158th anal-
ysis cycle (06:00 UTC, 9 February) and the 159th analysis cycle
(12:00 UTC, 9 February), respectively. The cross shows the loca-
tion of the point considered in panel (a).

only an example, and the non-Gaussianity genesis in the ex-
tratropics is generally more complicated and would be af-
fected not only by vertical stratification but also by larger-
scale atmospheric phenomena such as extratropical cyclones
and advections. Here, we do not go into details for different
cases of non-Gaussianity genesis, but instead, this is further
discussed in Sect. 5.

The non-Gaussian measures are sensitive to the ensem-
ble size due to sampling errors. Figure 17 shows the spa-
tial distributions of the skewness β1/2

1 , kurtosis β2, and KL
divergence DKL for temperature at the fourth model level
(∼ 500 hPa) at 06:00 UTC on 22 February with 80, 320, and
1280 subsamples from 10 240 members, respectively. Skew-
ness β1/2

1 , kurtosis β2, and KL divergenceDKL with 80 mem-
bers contain high levels of contaminating errors originating
from sampling errors, and the non-Gaussian measures are
difficult to distinguish from the contaminating errors. When
increasing the ensemble size up to 1280, the sampling er-
rors become smaller by gradation. With 1280 members, the
sampling errors are essentially removed, and the distributions

Figure 11. Scatter diagram of 06:00 UTC versus 12:00 UTC on
9 February for the background temperature at the fourth model
level (∼ 500 hPa) at 1.9◦ N, 168.7◦ E. The colors show dθ ′e =
(dθe 12:00 UTC− dθe 06:00 UTC)−

(
dθe 12:00 UTC− dθe 06:00 UTC

)
The histograms in the right and upper panels show the background
temperature at the same grid point.

Figure 12. Similar to Fig. 11, but for 06:00 UTC versus 12:00 UTC
on 9 February for background precipitation.

www.nonlin-processes-geophys.net/26/211/2019/ Nonlin. Processes Geophys., 26, 211–225, 2019



220 K. Kondo and T. Miyoshi: Non-Gaussian statistics in global atmospheric dynamics

Figure 13. Similar to Fig. 11, but for 06:00 UTC versus 12:00 UTC
on 9 February for background zonal wind at the fourth model level
(∼ 500 hPa).

Figure 14. Spatial distributions of the KL divergence for back-
ground temperature at the fourth model level (∼ 500 hPa) (a) at
00:00 UTC on 15 February and (b) at 06:00 UTC on 15 Febru-
ary. Contours show geopotential height of the ensemble mean at
the 500 hPa level.

are comparable to those with 10 240 members (see Fig. 4).
Therefore, a sample size of about 1000 members is neces-
sary to represent a non-Gaussian PDF. The outliers are also
depend on the sample size. Figure 18 shows LOF with 80,
320, 1280, and 5120 subsamples from 10 240 members for
temperature at the fourth model level at grid point B (35.3◦ N,
146.3◦ E), as in Fig. 5b. With 80 members, there are no out-
liers as the LOF of each member is much smaller than the
outlier threshold of 8.0. When the ensemble size is 320, four
members with a high LOF > 8.0 are identified as outliers.
With the ensemble sizes of 1280 and 5120, 13 and 41 mem-
bers construct a small cluster, respectively, but they are not
outliers with the threshold of LOF= 8.0. When increasing

Figure 15. Scatter diagram of background specific humidity at
the second model level (∼ 850 hPa) versus background precipita-
tion at 42.7◦ N, 48.8◦W (311.3◦ E) at 06:00 UTC on 15 Febru-
ary. The colors show dθ ′e = (dθe 06:00 UTC− dθe 00:00 UTC)−(
dθe 06:00 UTC− dθe 00:00 UTC

)
The histograms in the right and up-

per panels show background precipitation and temperature at the
same grid point, respectively.

Figure 16. Similar to Fig. 14, but for background specific humidity
versus meridional wind background at the second level (∼ 850 hPa).
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the ensemble size up to 10 240, the LOFs of the small cluster
and main cluster show almost the same value (Fig. 5b).

We saw good agreement between the RMSE and ensem-
ble spread (Fig. 7a, b), but it is useful to further evaluate the
10 240-member ensemble using ranked probability scores.
The rank histogram (Hamill and Collucci, 1997; Talagrand et
al., 1999; Anderson, 1996; Hamill, 2001) evaluates the reli-
ability of ensemble statistically. Figure 19 shows almost flat
rank histograms at all grid points and the grid points with
non-Gaussian PDF. The truth is known in this study and used
as a verifying analysis. The flat rank histograms correspond
to healthy background ensemble distributions. The contin-
uous ranked probability score (CRPS, Hersbach, 2000) is
another method to evaluate ensemble distributions, decom-
posed into reliability, resolution and uncertainty as

CRPS= Reli−Resol+U. (10)

Here, the reliability (Reli) becomes zero under the perfectly
reliable system. The resolution (Resol) indicates the degree
to which the ensemble distinguishes situations with different
frequencies of occurrence, and is associated with the accu-
racy or sharpness. The uncertainty (U ) measures the climato-
logical variability. The reliability, resolution and uncertainty
are given on the prescribed area as

Reli=
N∑
i=0

gi(oi −pi)
2

pi =
i

N
(11)

U −Resol=
N∑
i=0

gioi (1− oi) (12)

U =
∑
k,l<k

wkwl

∣∣∣yk − yl∣∣∣ (13)

(cf. Eqs. (36), (37) and (19) in Hersbach, 2000, respectively).
Here, gi is the area-weighted average width of the bin i be-
tween consecutive ensemble members xi and xi+1, and oi is
the area-weighted average frequency that the verifying anal-
ysis is less than (xi+1+ xi)/2. N denotes an ensemble size.
In this study, yk and yl indicate the anomalies between the
background ensemble mean and monthly climatology com-
puted from a 30-year nature run at the grid points k and l,
respectively. The weights wk , wl are proportional to the co-
sine of latitude. Table 1 shows that the reliability is closer to
zero and that the resolution is much higher at all grid points
than at the grid points with non-Gaussian PDF. Therefore,
the non-Gaussian PDF has a negative impact on updating the
state variables for the LETKF. The smaller uncertainty at the
grid points with non-Gaussian PDF reflects generally smaller
variations in the tropics where the non-Gaussian PDFs fre-
quently appear. Similar results are obtained for the other vari-
ables.

Table 1. CRPS and its three components (reliability, resolution, and
uncertainty) for background specific humidity at the lowest model
level (∼ 925 hPa) from 00:00 UTC on 25 January to 18:00 UTC on
1 March.

CRPS Reli Resol U

(g kg−1) (g kg−1) (g kg−1) (g kg−1)

All grid points 0.0214 0.0000101 0.525 0.547
Grid points with 0.0475 0.0000244 0.030 0.077
Non-Gaussian PDF

5 Summary and discussions

Kalman filters provide the minimum variance linear estima-
tor, which coincides with the maximum likelihood estimator
if the PDFs are Gaussian. This study investigated the non-
Gaussian PDF and its behavior using the SPEEDY-LETKF
system with 10 240 members. Non-Gaussian PDFs appear
frequently in the areas where the RMSE and ensemble spread
are larger. Moreover, an ensemble size of about 1000 is
necessary to identify the possible non-Gaussianity of PDFs,
which may be difficult to detect in the presence of sampling
error.

The non-Gaussian PDF frequently appears in the tropics
and the storm track regions over the Pacific and Atlantic
oceans, particularly for temperature and specific humidity,
but not for winds. With the SPEEDY model, the genesis of
non-Gaussian PDF in the tropics is mainly associated with
the convective instability. These results suggest that the non-
Gaussianity is mainly caused by precipitation processes such
those associated with cumulus convection, but much less by
dynamic processes. Generally, the atmosphere in the trop-
ics tends to become unstable, and the convective instability
is mitigated by vertical convection with precipitation. In the
SPEEDY model, a simplified mass-flux scheme developed
by Tiedtke (1993) is applied. Convection occurs when either
the specific or relative humidity exceeds a prescribed thresh-
old (Molteni, 2003). The members that hit the threshold have
precipitation, and this process mitigates their own convective
instability resulting in a temperature rise and humidity de-
crease. In contrast, the members with no or little precipitation
enhance or cannot mitigate their own convective instability.
Therefore, convective instability is a key to non-Gaussianity
genesis in the tropics in the SPEEDY model.

In the extratropics, non-Gaussianity is generally weak and
seldom appears except in the storm track regions, where the
genesis of the non-Gaussian PDF is also associated with in-
stabilities, but with different processes from the tropics. This
study focused on a case near the extratropical cyclone in the
North Atlantic, and the results showed that the instability was
associated with the horizontal advections. The members with
reduced instabilities had lower humidity in the lower tro-
posphere and higher temperature in the mid troposphere by
meridional advections. In contrast, the members with higher
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Figure 17. Spatial distributions of (a–c) skewness, (d–f) kurtosis, and (g–i) KL divergence for temperature at the fourth model level (∼
500 hPa) at 06:00 UTC on 22 February. The left, center, and right columns show 80, 320, and 1280 subsamples from 10 240 members,
respectively.

humidity in the lower troposphere and lower temperature
in the mid troposphere enhanced their instability. Moreover,
the precipitation process through the cumulus parameteri-
zation did not explain the non-Gaussian PDF. Precipitation
associated with extratropical cyclones is usually caused by
synoptic-scale baroclinic instabilities and does not mitigate
the local instability completely.

As mentioned in Sect. 4, generalizing the process of non-
Gaussianity genesis in the extratropics is not simple. The
non-Gaussianity genesis is generally associated with insta-
bility from various processes such as the convection, ad-
vection, and larger-scale atmospheric phenomena, so that
it is very difficult to find general mechanisms of the non-
Gaussianity genesis in the extratropics even for the sim-
ple SPEEDY model. Furthermore, if we use more realistic
models with complex physics schemes, the process of non-
Gaussianity genesis would be much more diverse and com-
plicated. This is partly why we did not go into details to in-
vestigate different cases of non-Gaussianity genesis with the
SPEEDY model.

The non-Gaussianity is less frequent in the wind compo-
nents not only on the timescale of 1 month but also for the
snapshot, although the dynamic process of the atmosphere
is a nonlinear system. Moreover, the non-Gaussian PDFs of
temperature and specific humidity seldom affect the PDFs of

the wind components. We hypothesize that the model com-
plexity may be a reason for this. The SPEEDY model could
not resolve some local interactions between wind compo-
nents and other variables due to its coarse resolution and
simplified processes. With more realistic models, physical
processes are much more complex, and the local interac-
tions can also be represented. Indeed, we obtained widely
distributed non-Gaussianity with a 10 240-member NICAM-
LETKF system with a 112 km horizontal resolution assim-
ilating real observations from the National Centers for En-
vironmental Prediction (NCEP) known as PREPBUFR from
00:00 UTC on 1 November to 00:00 UTC on 8 November
(Miyoshi et al., 2015). Figure 20 shows the spatial distribu-
tions of background KL divergence of zonal wind and tem-
perature at the second model level (∼ 850 hPa) for SPEEDY
at 00:00 UTC on 1 March and zonal wind and temperature
at the eighth model level (∼ 850 hPa) for the NICAM at
00:00 UTC on 8 November 2011. With NICAM, the non-
Gaussianity appears globally not only in the temperature
field but also in the zonal wind, although we should account
for the model errors of NICAM. This result implies that
the NICAM has various sources of non-Gaussianity such as
smaller-scale physical and dynamical processes with various
interactions among different model variables, and suggests
the limitation of this study using the SPEEDY model. In a
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Figure 18. Similar to Fig. 5b, but for the ensemble sizes (a) 80,
(b) 320, (c) 1280, and (d) 5120.

Figure 19. Rank histograms verified against truth for background
specific humidity at the lowest model level (∼ 925 hPa) at (a) all
grid points and (b) the grid points with non-Gaussian PDF from
00:00 UTC on 25 January to 18:00 UTC on 1 March.

realistic situation, we would presumably have more frequent
occurrence of non-Gaussianity.

The outliers appear almost randomly regardless of loca-
tions, levels, and variables, and the lifetime is about a few
analysis steps. When the outliers appear, the number of out-
liers is basically one per grid point, but sometimes the num-
ber is more than one. Anderson (2010) also reported similar
results using a low-order dry atmospheric model. These re-
sults seem not to be consistent with Amezcua et al. (2012),
who reported that just one outlier appeared with the ensem-

Figure 20. Spatial distributions of background KL divergence for
the SPEEDY and NICAM models. Upper panels show (a) zonal
wind and (b) temperature at the second model level (∼ 850 hPa)
for the SPEEDY model at 00:00 UTC on 1 March. Bottom panels
show (c) zonal wind and (d) temperature at the eighth model level
(∼ 850 hPa) for NICAM at 00:00 UTC on 8 November 2011.

ble square root filters in low-dimensional models and that
the outlier did not rejoin the cluster easily. These proper-
ties of their outlier and our outliers in the SPEEDY model
are somewhat different. In the low-dimensional models, a
certain ensemble member tends to become an outlier at all
grid points and all variables. In contrast, the outliers in the
SPEEDY model appear at just some grid points but not all
grid points and do not appear in all variables simultaneously.
In addition, the negative influence of outliers on the analysis
accuracy may be quite small in high-dimensional models due
to the randomness and short longevity of outliers. In fact, the
results showed no clear correspondence between the outlier
frequency and analysis accuracy. These are the results from
the simple SPEEDY model. How the outliers behave with a
more realistic model and real observations remains the sub-
ject of future research.

As measures of non-Gaussianity, skewness, kurtosis, and
KL divergence for the non-Gaussianity, and the SD and LOF
methods for outliers, are introduced and compared with each
other. The KL divergence is a more suitable measure because
it measures the direct difference between the ensemble-based
histogram and the fitted Gaussian function. The LOF method
is better than the SD method because it can detect the out-
liers depending on the density of objects. Although it is easy
to detect the outliers using the SD method, misdetection of
outliers is possible because this method categorizes a small
cluster far from the main cluster into outliers. The small clus-
ter may be generated via physical processes and have phys-
ical significance; therefore, such cases should not be treated
as outliers. The measures of non-Gaussianity are evaluated in
the univariate field in this study. An extension to multivariate
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fields with multivariate analysis remains a subject for future
research.

Non-Gaussian measures tend to be more sensitive to the
sampling error due to the limited ensemble size (see Figs. 17,
18). When the ensemble size is small, it is difficult to de-
termine whether a split member is a real outlier or a sam-
ple from a small cluster. Amezcua et al. (2012) discussed
the outliers by skewness using the 20-member SPEEDY-
LETKF and reported that the skewness is clearly large in
the tropics and the Southern Hemisphere for the tempera-
ture and humidity fields. These results were not consistent
with those of the present study because the outliers appear
randomly. However, this inconsistency may have been due to
the small ensemble size. The large skewness of Amezcua et
al. (2012) could possibly indicate the non-Gaussianity rather
than the outliers with a large ensemble size. Having a suf-
ficient ensemble size, suggested to be about 1000 according
to this study, would be essential when discussing about non-
Gaussianity and outliers.
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