Articles | Volume 25, issue 4
https://doi.org/10.5194/npg-25-747-2018
https://doi.org/10.5194/npg-25-747-2018
Research article
 | 
07 Nov 2018
Research article |  | 07 Nov 2018

Data assimilation of radar reflectivity volumes in a LETKF scheme

Thomas Gastaldo, Virginia Poli, Chiara Marsigli, Pier Paolo Alberoni, and Tiziana Paccagnella

Related authors

GPTCast: a weather language model for precipitation nowcasting
Gabriele Franch, Elena Tomasi, Rishabh Wanjari, Virginia Poli, Chiara Cardinali, Pier Paolo Alberoni, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2407.02089,https://doi.org/10.48550/arXiv.2407.02089, 2024
Short summary
Predictability analysis and skillful scale verification of the Lightning Potential Index (LPI) in the COSMO-D2 high resolution ensemble system
Michele Salmi, Chiara Marsigli, and Manfred Dorninger
Adv. Sci. Res., 19, 29–38, https://doi.org/10.5194/asr-19-29-2022,https://doi.org/10.5194/asr-19-29-2022, 2022
Short summary
Review article: Observations for high-impact weather and their use in verification
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021,https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy
Giacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, and Federico Porcù
Atmos. Meas. Tech., 13, 5779–5797, https://doi.org/10.5194/amt-13-5779-2020,https://doi.org/10.5194/amt-13-5779-2020, 2020
Short summary
Sensitivity of forecast skill to the parameterisation of moist convection in a limited-area ensemble forecast system
Matteo Vasconi, Andrea Montani, and Tiziana Paccagnella
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-21,https://doi.org/10.5194/npg-2018-21, 2018
Revised manuscript has not been submitted

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary

Cited articles

Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83, https://doi.org/10.1111/j.1600-0870.2008.00361.x, 2009. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts, Mon. Weather Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2, 1999. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2016. a
Berner, J., Fossell, K. R., Ha, S.-Y., Hacker, J. P., and Snyder, C.: Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations, Mon. Weather Rev., 143, 1295–1320, https://doi.org/10.1175/MWR-D-14-00091.1, 2015. a
Download
Short summary
Accuracy of numerical weather prediction forecasts is strongly related to the quality of initial conditions employed. To improve them, it seems advantageous to use radar reflectivity observations because of their high spatial and temporal resolution. This is tested in a high-resolution model whose domain covers Italy. Results show that the employment of reflectivity observations improves precipitation forecast accuracy, but the positive impact is lost after a few hours of forecast.