Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
  • CiteScore value: 2.8 CiteScore
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
NPG | Articles | Volume 25, issue 4
Nonlin. Processes Geophys., 25, 747–764, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Numerical modeling, predictability and data assimilation in...

Nonlin. Processes Geophys., 25, 747–764, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Nov 2018

Research article | 07 Nov 2018

Data assimilation of radar reflectivity volumes in a LETKF scheme

Thomas Gastaldo et al.

Related authors

Commercial Microwave Links as a tool for operational rainfall monitoring in Northern Italy
Giacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, and Federico Porcù
Atmos. Meas. Tech. Discuss.,,, 2020
Revised manuscript under review for AMT
Short summary
Sensitivity of forecast skill to the parameterisation of moist convection in a limited-area ensemble forecast system
Matteo Vasconi, Andrea Montani, and Tiziana Paccagnella
Nonlin. Processes Geophys. Discuss.,,, 2018
Revised manuscript has not been submitted
Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign
Ida Maiello, Sabrina Gentile, Rossella Ferretti, Luca Baldini, Nicoletta Roberto, Errico Picciotti, Pier Paolo Alberoni, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci., 21, 5459–5476,,, 2017
Short summary
Sensitivity of sea-level forecasting to the horizontal resolution and sea surface forcing for different configurations of an oceanographic model of the Adriatic Sea
Lidia Bressan, Andrea Valentini, Tiziana Paccagnella, Andrea Montani, Chiara Marsigli, and Maria Stefania Tesini
Adv. Sci. Res., 14, 77–84,,, 2017
Short summary
Overview of the first HyMeX Special Observation Period over Italy: observations and model results
R. Ferretti, E. Pichelli, S. Gentile, I. Maiello, D. Cimini, S. Davolio, M. M. Miglietta, G. Panegrossi, L. Baldini, F. Pasi, F. S. Marzano, A. Zinzi, S. Mariani, M. Casaioli, G. Bartolini, N. Loglisci, A. Montani, C. Marsigli, A. Manzato, A. Pucillo, M. E. Ferrario, V. Colaiuda, and R. Rotunno
Hydrol. Earth Syst. Sci., 18, 1953–1977,,, 2014

Related subject area

Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian
Nonlin. Processes Geophys., 27, 373–389,,, 2020
Short summary
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347,,, 2020
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327,,, 2020
Short summary
Brief communication: Residence time of energy in the atmosphere
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237,,, 2020
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207,,, 2020
Short summary

Cited articles

Anderson, J. L.: Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus A, 61, 72–83,, 2009. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts, Mon. Weather Rev., 127, 2741–2758,<2741:AMCIOT>2.0.CO;2, 1999. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905,, 2011. a
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633,, 2016. a
Berner, J., Fossell, K. R., Ha, S.-Y., Hacker, J. P., and Snyder, C.: Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations, Mon. Weather Rev., 143, 1295–1320,, 2015. a
Publications Copernicus
Short summary
Accuracy of numerical weather prediction forecasts is strongly related to the quality of initial conditions employed. To improve them, it seems advantageous to use radar reflectivity observations because of their high spatial and temporal resolution. This is tested in a high-resolution model whose domain covers Italy. Results show that the employment of reflectivity observations improves precipitation forecast accuracy, but the positive impact is lost after a few hours of forecast.
Accuracy of numerical weather prediction forecasts is strongly related to the quality of initial...