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Abstract. Quantitative precipitation forecast (QPF) is still a
challenge for numerical weather prediction (NWP), despite
the continuous improvement of models and data assimilation
systems. In this regard, the assimilation of radar reflectivity
volumes should be beneficial, since the accuracy of analy-
sis is the element that most affects short-term QPFs. Up to
now, few attempts have been made to assimilate these ob-
servations in an operational set-up, due to the large amount
of computational resources needed and due to several open
issues, like the rise of imbalances in the analyses and the es-
timation of the observational error. In this work, we evalu-
ate the impact of the assimilation of radar reflectivity vol-
umes employing a local ensemble transform Kalman filter
(LETKF), implemented for the convection-permitting model
of the COnsortium for Small-scale MOdelling (COSMO). A
4-day test case on February 2017 is considered and the veri-
fication of QPFs is performed using the fractions skill score
(FSS) and the SAL technique, an object-based method which
allows one to decompose the error in precipitation fields in
terms of structure (S), amplitude (A) and location (L). Re-
sults obtained assimilating both conventional data and radar
reflectivity volumes are compared to those of the operational
system of the Hydro-Meteo-Climate Service of the Emilia-
Romagna Region (Arpae-SIMC), in which only conventional
observations are employed and latent heat nudging (LHN) is
applied using surface rainfall intensity (SRI) estimated from
the Italian radar network data. The impact of assimilating re-
flectivity volumes using LETKF in combination or not with
LHN is assessed. Furthermore, some sensitivity tests are per-
formed to evaluate the effects of the length of the assimila-
tion window and of the reflectivity observational error (roe).
Moreover, balance issues are assessed in terms of kinetic en-
ergy spectra and providing some examples of how these af-

fect prognostic fields. Results show that the assimilation of
reflectivity volumes has a positive impact on QPF accuracy in
the first few hours of forecast, both when it is combined with
LHN or not. The improvement is further slightly enhanced
when only observations collected close to the analysis time
are assimilated, while the shortening of cycle length worsens
QPF accuracy. Finally, the employment of too small a value
of roe introduces imbalances into the analyses, resulting in
a severe degradation of forecast accuracy, especially when
very short assimilation cycles are used.

1 Introduction

Numerical weather prediction (NWP) models are widely
used in meteorological centers to produce forecasts of the
state of the atmosphere. In particular, they play a key role in
the forecast of precipitation (Cuo et al., 2011), which arouses
great interest due to the many applications in which it is in-
volved, from the issue of severe weather warnings to deci-
sion making in several branches of agriculture, industry and
transportation. Therefore, an accurate quantitative precipita-
tion forecast (QPF) is of great value for society and economic
activities.

In recent years, the increase in available computing re-
sources has allowed one to increment NWP spatial resolu-
tion and to improve the accuracy of parametrization schemes,
enabling the development of convection-permitting models
(Clark et al., 2016). Despite that, QPF is still a challenge
since it is affected by uncertainties in timing, location and
intensity (Cuo et al., 2011; Röpnack et al., 2013). These er-
rors arise partly from the chaotic behaviour of the atmosphere
and from shortcomings in the model physics (Berner et al.,
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2015), but the main factor which affects the quality of QPF,
especially in the short range (3–12 h), is the accuracy of ini-
tial conditions (Dixon et al., 2009; Clark et al., 2016).

The initial condition (analysis) is generally produced by
a data assimilation procedure which combines model state
(background or first guess) and observations to provide
the best possible estimate of the actual state of the atmo-
sphere at a given time. In the last decades, different as-
similation schemes have been proposed and implemented
operationally in meteorological centres around the world
(Bannister, 2016). They can be divided into different fam-
ilies: those based on a variational approach, like three-
dimensional variational data assimilation (3D-Var; Courtier
et al., 1998) and four-dimensional variational data assimi-
lation (4D-Var; Buehner et al., 2010b), those based on the
ensemble Kalman filter (EnKF: Evensen, 1994; Houtekamer
and Mitchell, 1998) and those based on the particle filter
(PF; see van Leeuwen, 2009 for a review). At the convec-
tive scale, EnKF methods seem to be preferable to variational
schemes (Schraff et al., 2016). In fact, they determine explic-
itly the background error covariance, which is highly flow-
dependent at the convective scale. Furthermore, in a varia-
tional scheme it is not straightforward to update any variable
of a NWP model since an explicit linear and adjoint rela-
tion to the control vector of prognostic variables is needed.
These problems can be partly addressed by employing hy-
brid EnKF–variational techniques (like Wang et al., 2008;
Gustafsson and Bojarova, 2014), but these approaches have
mostly been applied to larger-scale NWP. A more preferable
option would be to employ a PF, which is also considered to
be the most promising technique to deal with the non-linear
and non-Gaussian characters of dynamics and error statis-
tics (Yano et al., 2018). Unfortunately, despite the efforts to
overcome the dimensionality challenges of this assimilation
technique (e.g. Poterjoy, 2016), PF is still not feasible for op-
erational applications. Returning to EnKF methods, several
variants have been suggested (for a survey, refer to Meng
and Zhang, 2011), and one of the most popular is the lo-
cal ensemble transform Kalman filter (LETKF) proposed by
Hunt et al. (2007). It is used operationally in several meteo-
rological centres like at COMET (Bonavita et al., 2010), at
MeteoSwiss employing the version of the scheme developed
for the COSMO consortium (Schraff et al., 2016) and for
research purposes at both the Japan Meteorological Agency
(JMA; Miyoshi et al., 2010) and at the European Centre for
Medium-Range Weather Forecasts (ECMWF; Hamrud et al.,
2015).

The quality of the analysis is determined not only by the
data assimilation scheme employed, but also by the quality
and number of observations that can be assimilated. With
this aim, the assimilation of radar observations can be very
beneficial, since they are highly dense in space (both hor-
izontally and vertically) and in time. Up to now, several
attempts have been made to improve the quality of anal-
yses and subsequently the accuracy of QPFs by assimilat-

ing rainfall data estimated from radar reflectivity observa-
tions (Jones and Macpherson, 2006; Leuenberger and Rossa,
2007; Sokol, 2009; Davolio et al., 2017). Conversely, only
a few attempts have been made to directly assimilate reflec-
tivity volumes in a convection-permitting model employing
EnKF techniques (e.g. Snyder and Zhang, 2003), especially
in an operational framework (e.g. Bick et al., 2016). Despite
some promising results, many issues affect the assimilation
of reflectivity volumes at high spatial resolution, and several
aspects need to be further investigated.

First of all, the length of the assimilation window, which
is one of the key aspects of any data assimilation system,
has to be examined. In EnKF methods, a short window
would be desirable to avoid dynamical features leaving the
area where computed localized increments are significant
(Buehner et al., 2010a) and to better preserve the Gaus-
sianity of the ensemble which can be compromised by non-
linearities (Ferting et al., 2007). On the other hand, too short
a window would lead to an increase in imbalances in the anal-
ysis, since the model has no time to filter spurious gravity
waves, introduced at each initialization, through the forecast
step of the assimilation cycle. When reflectivity volumes are
assimilated, the window length becomes even more crucial
since these observations allow one to catch small-scale fea-
tures of the atmosphere (Houtekamer and Zhang, 2016). In
order to exploit the high temporal frequency of these data,
which is essential to properly characterize fast developing
and moving precipitation systems, it seems reasonable to em-
ploy short windows to assimilate, in each cycle, only ob-
servations collected very close to the analysis time. Further-
more, the choice of a short window is encouraged by the use
of short localization scales, which has to be employed since
small-scale features are observed. Conversely, the large num-
ber of radar observations enhances the imbalance issue and,
therefore, the imbalances generated in the model by each ini-
tialization should be checked and kept under control.

Another important issue is how to determine the observa-
tional error for radar reflectivities. As for any other obser-
vation, this is influenced by three different sources: instru-
mental errors, representativity errors and observation opera-
tor errors (Janjić et al., 2017). Since none of these are known,
the choice of its value is not straightforward and can be es-
timated only in a statistical sense. Considering the amount
of radar data, a correct estimation of the observational er-
ror is crucial, since even a small departure from the correct
value can have a large impact on the quality of the analyses.
Moreover, it should be taken into account that the use of the
radar data is highly dependent on the observation operator
adopted, and its biases should also be studied and ideally re-
moved. Finally, a further challenge is the estimation of the
observational error correlation, especially when dealing with
radar data assimilation, due to the high density of this type of
observation.

At Arpae-SIMC, the Hydro-Meteo-Climate Service of the
Emilia-Romagna Region, in Italy, a LETKF scheme is used
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to provide the initial conditions to the convection-permitting
components of the operational modelling chain, consisting
of one deterministic run and one ensemble system, both at
2.2 km horizontal resolution. Currently, only conventional
data are assimilated through the LETKF scheme, and latent
heat nudging (LHN; Stephan et al., 2008) is performed us-
ing rainfall intensity estimated from the Italian radar network
data. The purpose of this paper is to present the first results
obtained when reflectivity volumes are also assimilated using
the LETKF scheme. In particular, the impact of assimilating
reflectivity volumes in combination or not with LHN is eval-
uated. Furthermore, the sensitivity of the obtained analysis
to two important characteristics of the assimilation cycle is
studied: the length of each cycle and the observational error
attributed to the radar reflectivities.

This paper is organized as follows. In Sect. 2 the model
and the data assimilation system are described, as well as
the observations employed. Furthermore, the operational set-
up implemented at Arpae is reported in conjunction with the
set-up of the experiments performed in this study. In Sect. 3
the verification methods are explained. In Sect. 4 results are
shown and discussed. In Sect. 5 some conclusions are drawn.

2 Data, model and methodology

2.1 The COSMO model

The COSMO model (Baldauf et al., 2011) is a non-
hydrostatic limited-area model developed by the multi-
national COnsortium for Small-scale MOdelling (COSMO)
and it is designed for both operational NWP and several re-
search applications. It is based on the primitive equations de-
scribing compressible flows in a moist atmosphere and the
continuity equation is replaced by a prognostic equation for
the pressure perturbation (deviation from a reference state).
The prognostic variables involved in these equations are the
three-dimensional wind vector, temperature, pressure pertur-
bation, turbulent kinetic energy (TKE) and specific amount
of water vapour, cloud water, cloud ice, rain, snow and grau-
pel.

In the present study, the COSMO model is run at 2.2 km
horizontal resolution over a domain covering Italy and part of
the neighbouring countries (Fig. 1) and employing 65 terrain-
following hybrid layers. The model top is at 22 km.

Regarding set-up and parametrizations, deep convec-
tion is resolved explicitly, while the shallow convection
is parametrized following the non-precipitating part of the
Tiedtke scheme (Tiedtke, 1989). Cloud formation and de-
cay is controlled by a Lin-type one-moment bulk micro-
physics scheme which includes all the prognostic microphys-
ical species (Lin et al., 1983; Seifert and Beheng, 2001). The
turbulent parametrization is based on a TKE equation with
a closure at level 2.5, according to Raschendorfer (2001).
Radiative effects are described by the δ-two-stream radia-

Figure 1. Integration domain (greyscale) of the COSMO model em-
ployed in this study with the Italian radar network overlapped. For
each radar the approximate coverage area is shown with a dashed
line if the radar system contributes only to the SRI composite em-
ployed in LHN and with a solid line if it is used also to directly
assimilate reflectivity volumes through KENDA.

tion scheme of Ritter and Geleyn (1992) for short-wave and
long-wave fluxes. Finally, the lower boundary conditions at
the ground are provided by multi-layer soil model TERRA
(Doms et al., 2011).

2.2 The KENDA system

The KENDA system (Schraff et al., 2016) implements for
the COSMO model the LETKF scheme described by Hunt
et al. (2007). In this implementation, the method is fully
four-dimensional; that is, all observations collected during
the assimilation window contribute to determining the analy-
sis and the related model equivalents are computed using the
prognostic variables at the proper observation time. To avoid
spurious long-distance correlations in the background error
covariance matrix, analyses are performed independently for
each model grid point taking into account only nearby obser-
vations (observation localization). Observations are weighted
according to their distance from the grid point considered
using the Gaspari–Cohn correlation function (Gaspari and
Cohn, 1999). In the present work, two different values of
the Gaspari–Cohn localization length scale are employed for
conventional and radar observations: 80 km for the former,
16 km for the latter (as done by Bick et al., 2016).

The limited size of the ensemble, combined with the as-
sumption of a perfect model made in the LETKF scheme,
leads to an underestimation of the background and analysis
variances (e.g. Anderson, 2009) and, as a consequence, the
quality of analyses is negatively affected. To address this is-
sue, KENDA provides some techniques to enlarge the spread
of the ensemble (for a complete description of each of them,
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refer to Schraff et al., 2016). Here, multiplicative covari-
ance inflation (Anderson and Anderson, 1999) and the re-
laxation to prior perturbation (RTPP; Zhang et al., 2004) are
employed. The former consists in inflating the analysis error
covariance by a factor ρ greater than 1 which is estimated fol-
lowing Houtekamer et al. (2005). The latter lies on the relax-
ation of the analysis ensemble perturbations xa

i − xa (where
xa
i is the analysis for the ith member and xa is the analysis

ensemble mean) towards the background ensemble perturba-
tions xb

i − xb, that is,

xa
i,new− xa

= (1−α)
(
xa
i − xa)

+α
(
xb
i − xb

)
, (1)

where αp = 0.75 (see also Harnisch and Keil, 2015). Another
approach provided by KENDA to account for model error is
the additive inflation. It consists in adding random noise with
mean 0 and covariance Q to the analysis ensemble members,
where Q is the model error covariance matrix (Houtekamer
and Mitchell, 2005). Since Q is not known, it is assumed to
be proportional (by a factor smaller than 1) to a static back-
ground error covariance B (Mitchell and Houtekamer, 2000).
In the present work, additive inflation is not employed.

The KENDA suite also allows one to compute the analy-
sis weights, i.e. the analysis on ensemble space, on a coars-
ened grid (Yang et al., 2009). After being computed on the
coarsened grid, weights are interpolated on the original high-
resolution grid and then used to compute analysis increments
in model space. In this way, the computational cost is de-
creased without significantly affecting the accuracy of anal-
ysis (Yang et al., 2009). In the present study, a coarsening
factor equal to 3 is employed.

2.3 Assimilated data

KENDA allows the assimilation of both conventional and
non-conventional observations.

Conventional observations assimilated in this work in-
clude aircraft measurements (AMDAR) of temperature and
horizontal wind, surface station measurements (SYNOP) of
10 m horizontal wind, 2 m temperature, 2 m relative humidity
and surface pressure, and radiosonde data (TEMP) of temper-
ature, horizontal wind and humidity.

With regards to non-conventional observation, KENDA al-
lows also the assimilation of radar reflectivity volumes and
radial winds. Radar data are assimilated through the Effi-
cient Modular VOlume RADar Operator (EMVORADO) ex-
pressly designed for the COSMO model. It simulates the
radar reflectivity factor and radial velocities processing the
COSMO model fields one radar system at a time. Opera-
tor characteristics, resolution and the management of no-
precipitation information are described in Bick et al. (2016).

Although the operator gives the possibility to assimilate
both radial winds and reflectivities, in the present work only
reflectivity volumes are assimilated. Reflectivity volumes
come from four different radar stations over northern Italy

(solid circles in Fig. 1): Bric Della Croce (Piedmont Region),
Settepani (Liguria Region), and Gattatico and San Pietro
Capofiume (Emilia-Romagna Region). Due to the complex
orography of the considered area, radar are placed at very
different altitudes and have different acquisition strategies.
Observations are acquired every 10 min for Bric Della Croce
radar, every 5 min for Settepani radar, every 15 min for San
Pietro Capofiume radar and every 15 min starting from min-
utes 5 and 10 of each hour for Gattatico radar.

Data have a range resolution of 1 km, while the azimuthal
resolution is 1◦ for Bric Della Croce and Settepani and 0.9◦

for San Pietro Capofiume and Gattatico. Before assimilation
raw reflectivity is pre-processed, taking into account non-
meteorological echoes, beam blocking and attenuation to im-
prove the quality of data. In particular, it is important to
eliminate the clutter signal that would affect the analysis re-
trieval, introducing spurious observations. However, due to
the fact that volumes from single radars undergo different
pre-processing, it is not possible to define a homogeneous
quality criterion. For this reason, all data in the volume that
are not rejected from the pre-processing step are supposed to
have the same quality and are used in the assimilation cycle.

The high temporal and spatial density of observations is
valuable for estimating the initial state of numerical weather
forecast. This allows one to gather a lot of information on
the real state of the atmosphere, but it determines an increase
in analysis computational cost, in data transfer time and in
memory disk occupation. Moreover, a spatial and/or tempo-
ral high density violates the assumption made in many data
assimilation schemes: the non-correlation of observational
errors. To reduce the total amount of data and to extract the
essential content of information, the superobbing technique
is chosen (Michelson, 2003). In this way, reflectivities over
a defined area are combined through a weighted mean into
one single observation representative of the desired greater
spatial scale. As in Bick et al. (2016), the horizontal reso-
lution chosen in this work for the superobbing is equal to
10 km. Furthermore, before performing superobbing on the
observed and simulated fields, a threshold of 5 dBZ is ap-
plied to both fields in order to avoid large innovations associ-
ated with non-precipitating signals leading to large analysis
increments without physical relevance.

To evaluate the observational error associated with re-
flectivity volumes, a diagnostic based on statistical averages
of observations-minus-background and observations-minus-
analysis residuals, as described in Desroziers et al. (2005), is
used. Employing all radar data available during the test case,
a reflectivity observational error (roe) equal to 5 dBZ is esti-
mated, as found also by Tong and Xue (2005).

Finally, fields of surface rainfall intensity (SRI) are also
assimilated in each member of the assimilation ensemble us-
ing a latent heat nudging scheme. SRI data come from the
composite of the Italian radar network (all circles in Fig. 1)
and are distributed by the National Department of Civil Pro-
tection. These data have a temporal resolution of 10 min and

Nonlin. Processes Geophys., 25, 747–764, 2018 www.nonlin-processes-geophys.net/25/747/2018/



T. Gastaldo et al.: Data assimilation of radar reflectivity volumes in a LETKF scheme 751

a spatial resolution of 1 km, but before the assimilation they
are interpolated at the model resolution. Data coming from
each station undergo a quality control that removes those
with low quality. The quality depends on different factors
such as ground clutter, beam blocking, range distance, ver-
tical variability and attenuation as described in Rinollo et al.
(2013). The composite is then obtained as a weighted aver-
age of surface rain rates from single radar stations, where
weights are represented by quality. These fields are assimi-
lated through the LHN scheme, based on the assumption that
the latent heat, integrated along the vertical column, is ap-
proximately proportional to the observed precipitation. The
scheme, which is applied continuously during the integra-
tion of the model, acts in rescaling temperature profiles with
an adjustment of the humidity field according to the ratio
between observed and modelled rain rates. LHN has been
gainfully employed in different frameworks, including fore-
casts over complex terrain (Leuenberger and Rossa, 2004;
Leuenberger and Rossa, 2007). Our hypothesis is that, in the
KENDA framework, LHN allows one to have the model first
guess closer to the observed atmospheric state, improving the
analysis quality. For this reason, in all experiments (except
one) presented here, LHN is applied together to the direct
assimilation of reflectivity volumes through KENDA.

2.4 Operational set-up

The KENDA system is implemented operationally at Arpae
using an ensemble of 20 members plus a deterministic run,
which is obtained by applying the Kalman gain matrix for the
ensemble mean to the innovations of the deterministic run it-
self. In principle, ensemble mean analyses can be deployed
to initialize the deterministic forecasts, but this would lead
to some inaccuracies since the mean of a non-Gaussian en-
semble is generally not in balance (Schraff et al., 2016). For
this reason the deterministic branch is added to the system,
which differs from the ensemble ones only due to boundary
conditions. The ensemble members use lateral boundary con-
ditions provided every 3 h at a 10 km horizontal resolution by
the ensemble of the data assimilation system of the Centro
Operativo per la Meteorologia (COMet), based on a LETKF
scheme (Bonavita et al., 2010). The deterministic run em-
ploys hourly boundary conditions provided by a 5 km version
of the COSMO run at Arpae (COSMO-5M), whose domain
covers a large part of the Mediterranean basin and surround-
ing countries.

At Arpae, in the operational set-up, the COSMO model
configuration described in Sect. 2.1 is adopted for all
21 members. At present, in the operational chain only con-
ventional observations are assimilated and LHN is performed
on each member of the ensemble. The KENDA analyses are
used operationally to provide initial conditions to COSMO-
2I, the 2.2 km deterministic run initialized twice a day at
00:00 and 12:00 UTC, and to COSMO-2I EPS, an ensem-

ble which is run every day at 00:00 UTC for a 48 h forecast
range.

2.5 Experimental set-up

In order to evaluate the impact of the assimilation of reflectiv-
ity radar volumes, several experiments are performed. Each
experiment has the same set-up of the operational chain de-
scribed in Sect. 2.4 regarding the number of members of the
ensemble, boundary conditions and the COSMO model con-
figuration. Therefore, they differ only due to the assimilation
set-up. The complete list is provided in Table 1.

In the conv60 and conv60_nolhn experiments only conven-
tional observations are assimilated using KENDA through
cycles of 60 min. Moreover, in the former, LHN is per-
formed during the forecast step of each assimilation cycle,
replicating completely the operational set-up described in
Sect. 2.4. Experiments rad60 and rad60_nolhn are analogous
to conv60 and conv60_nolhn but, in addition, radar reflec-
tivity measurements are assimilated through KENDA, using
a reflectivity observation error (roe) of 5 dBZ. A compar-
ison between conv60 and rad60 or between conv60_nolhn
and rad60_nolhn allows an assessment of whether, under the
same conditions, the assimilation of reflectivity observations
improves the quality of analyses. Furthermore, comparing
rad60 to rad60_nolhn, it is possible to evaluate whether the
assimilation of reflectivity volumes combined with the LHN
provides better results than the assimilation of radar volumes
only.

All the other experiments involve the assimilation of both
conventional data and reflectivity volumes, in addition to
LHN. In order to test the impact of assimilating only obser-
vations which are not too far from the analysis time, sensitiv-
ity experiments on the duration of the assimilation windows
are performed. This is tested by comparing rad60 to experi-
ments rad30 and rad15, which differ from rad60 only for the
length of the assimilation window, equal to 30 and 15 min
respectively. An alternative way to assimilate only the most
relevant observations is to select in each cycle a subset of
data including the closest to the analysis time. In experiment
rad60_lst15 an assimilation window of 60 min is employed,
but only the observations (both conventional and radar reflec-
tivities) collected in the last 15 min of the cycle are taken into
account.

Since the estimation of observation error is not straight-
forward and different techniques can be applied, it is worth
evaluating the sensitivity of the assimilation system to this
parameter. In addition to the value of 5 dBZ employed in the
previous experiments, two other values are selected: 10 or
0.5 dBZ. Both of them are tested employing a 60 min assim-
ilation window (rad60_roe10 and rad60_roe0.5) and using
15 min cycles (rad15_roe10 and rad15_roe0.5).

The experiments described above are carried out over a
period of almost 4 days from 3 February at 06:00 UTC to
7 February at 00:00 UTC in 2017. During 3 and 4 Febru-
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Table 1. Experimental set-up of each experiment, including the length of the assimilation cycles, the type of observations assimilated, the
reflectivity observation error (roe) associated with radar data and any additional feature.

Trial Window Assimilated roe Note
length (min) obs. (dBZ)

conv60 60 conv. – –
conv60_nolhn 60 conv. – No LHN
rad60 60 conv. + radar 5 –
rad60_nolhn 60 conv. + radar 5 No LHN
rad30 30 conv. + radar 5 –
rad15 15 conv. + radar 5 –
rad60_lst15 60 conv. + radar 5 Use obs. in the last 15 min

of the window
rad60_roe10 60 conv. + radar 10 –
rad60_roe0.5 60 conv. + radar 0.5 –
rad15_roe10 15 conv. + radar 10 –
rad15_roe0.5 15 conv. + radar 0.5 –

ary, middle tropospheric circulation over northern and cen-
tral Italy was dominated by southwesterly divergent flows
associated with the passage of some precipitating systems.
On 5 February a trough moved from France to Italy and this
caused the formation of new precipitating systems in north-
ern Italy. During 6 February the trough moved slowly from
central Italy to the southern part of the country and precipita-
tion systems weakened gradually. For each experiment, anal-
yses of the deterministic member are used to initialize fore-
casts up to 24 h every 3 h from 3 February at 12:00 UTC to
6 February at 06:00 UTC with a total of 22 forecasts.

3 Verification

The performance of the experiments described in the pre-
vious section is assessed by the verification of precipitation
employing three methods: comparison of areal average pre-
cipitation, SAL technique and fractions skill score (FSS).
The first method is applied only to the precipitation during
the assimilation procedure for the deterministic member of
the first four experiments in Table 1, while SAL and FSS are
used to evaluate the QPF accuracy of the 22 forecasts initial-
ized for each experiment.

3.1 Areal average precipitation

The method consists in comparing spatially averaged model
precipitation to the average precipitation observed by rain
gauges over the same area. In order to have comparable sam-
ples, model precipitation is first interpolated on station loca-
tions by selecting the value at the nearest grid point. The rain-
gauge stations employed for this verification method (nearly
1500) are the black dots in the dark grey region in Fig. 2.
This area is chosen to cover approximately the domain where
reflectivity volumes are assimilated. Both model and rain-
gauge precipitation are accumulated in 3 h steps. Since this

Figure 2. Verification domains employed to perform SAL (dark
grey area) and FSS (union of dark grey and light grey areas). The
rain gauges (black dots) are used to correct precipitation estimated
from the Italian radar network. Furthermore, rain gauges over the
black grey domain are employed for the verification of areal aver-
age precipitation during the assimilation procedure.

method is used for the verification during the assimilation
procedure and the duration of each assimilation cycle, for the
experiments considered, is 1 h, model hourly precipitation is
accumulated in order to obtain the 3-hourly precipitation. To
summarize the results, the correspondence between model
and observations is evaluated in terms of root mean square
error (RMSE).

3.2 SAL

The SAL metrics (Wernli et al., 2008) is an object-based ver-
ification score which allows one to overcome the limitations
of traditional scores for convection-permitting models, like
the double-penalty problem (Rossa et al., 2008). The detec-
tion of individual objects in the accumulated precipitation
fields is achieved by considering continuous areas of grid
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points exceeding a selected threshold. Comparing objects
from observed and forecast fields, SAL provides information
about the structure S, the amplitude A and the location L
errors of QPF. A perfect match between forecast and obser-
vations would lead to S = A= L= 0; the more the values
differ from 0, the greater the disagreement between model
and observations. More in detail, too sharp/flat (broad/small)
a structure of forecast precipitation compared to observations
is associated with positive (negative) values of S; an overesti-
mation (underestimation) of average rainfall over the domain
is associated with positive (negative) values ofA; a misplace-
ment of precipitating systems leads to positive values of L.
Note that L can range between 0 and 2, and S and A between
−2 and 2.

Observations employed to perform SAL are hourly accu-
mulated precipitation estimated from the Italian radar net-
work and corrected using rain-gauge data. The radar–rain-
gauge adjustment, adapted for a radar composite, derives
from the method described in Koistinen and Puhakka (1981).
The original method comprises two terms: a range depen-
dency adjustment and a spatially varying adjustment. In our
case, only the second term is taken into account due to the
fact that, in overlapping areas of the composite, rainfall esti-
mation is obtained by combining data from different radars
and, therefore, the original information on the range distance
from the radar is lost. The correction is based on a weighted
mean of the ratio between rain gauges and estimated radar
rainfall amount calculated over the station locations. Weights
are a function of the distance of the grid point from the sta-
tion and of a filtering parameter calculated as the mean spac-
ing between five observations. Then a smoothing factor is
applied to the correction.

The verification area, shown in dark grey in Fig. 2, is the
same as for the areal average precipitation. In this case, the
rain gauges inside it are employed to correct the rainfall es-
timation from the radar network. As mentioned before, this
area covers approximately the domain where reflectivity vol-
umes are assimilated. The choice of a larger domain would
not be feasible. In Wernli et al. (2009) it is recommended to
use an area not larger than 500× 500 km2 since, otherwise,
the domain may include different meteorological systems,
making the interpretation of results problematic. In fact, if
the domain contains strongly differing meteorological sys-
tems, then results obtained using the SAL technique may not
be representative of the weakest one.

3.3 FSS

The fractions skill score is a verification method introduced
by Roberts and Lean (2008) based on the neighbourhood ap-
proach and applied to fractional coverage, that is, the fraction
of grid points exceeding a threshold. The score consists in
comparing forecast and observed fractional coverage over a
squared box (neighbourhoods) and it ranges between 0 (com-
pletely wrong forecast) and 1 (perfect forecast). Therefore, a

perfect match between model and observations is obtained
when the two fields have the same frequency of events in
each box. In this way, the method implicitly acknowledges
that the actual resolution of a model is larger than the grid
resolution and, at the same time, that observations may also
contain random error at the model grid scale. Like SAL, this
approach allows one to overcome the limitation of traditional
grid-point-based scores. Furthermore, it can be applied over
a domain larger than that employed for SAL since it is based
on dichotomy events instead of being based on the amount
of precipitation. For this reason, in this work FSS is applied
over the whole country of Italy (union of dark grey and light
grey domains in Fig. 2) considering boxes of 0.2◦ in both lat-
itude and longitude and, as for SAL, observations consist in
hourly accumulated precipitation estimated from the Italian
radar network corrected using rain-gauge data (all black dots
in Fig. 2).

4 Results

4.1 Impact of assimilating the radar reflectivities

A preliminary assessment of the impact of assimilating radar
reflectivity volumes with the KENDA system is provided
by comparing two pairs of experiments: conv60_nolhn with
rad60_nolhn and conv60 with rad60. In the experiment
named conv60_nolhn only conventional observations are as-
similated, while in the rad60_nolhn experiment both conven-
tional and radar reflectivity volumes are employed. The same
dichotomy is preserved in the second pair of experiments but,
in this case, LHN of SRI data is performed additionally in
both conv60 and rad60.

The areal average of 3-hourly precipitation during the as-
similation procedure is displayed in Fig. 3, employing pre-
cipitation recorded by rain gauges (black line) as an indepen-
dent reference observation. Comparing rad60_nolhn (solid
orange line) to conv60_nolhn (dashed blue line), the cor-
respondence between forecast and observed precipitation is
improved when reflectivity volumes are assimilated in com-
bination with conventional data through KENDA. In fact,
the RMSE is reduced from 0.38 mm of conv60_nolhn to
0.26 mm of the rad60_nolhn experiment. The same conclu-
sion holds when the assimilation through KENDA is com-
bined with LHN: the RMSE is reduced from 0.37 mm of
conv60 (dashed red line) to 0.29 mm of rad60 (solid green
line; this colour will be used from here onwards to identify
uniquely this experiment). Note that the LHN does not sub-
stantially affect the overall agreement between forecast and
observed precipitation when it is combined with the assimila-
tion of only conventional data (RMSE equal to 0.38 mm for
the conv60_nolhn experiment and 0.37 mm for conv60) but
slightly degrades the correspondence when reflectivity vol-
umes are also employed (RMSE equal to 0.26 mm for the
rad60_nolhn experiment and 0.29 mm for rad60).
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Figure 3. Areal average 3-hourly precipitation for rain gauges (black) in the verification area shown in dark grey in Fig. 2 and for the
corresponding model forecast, during the assimilation procedure, relative to experiments conv60_nolhn (dashed blue line), conv60 (dashed
red line), rad60_nolhn (solid orange line) and rad60 (solid green line).

Verification of areal average precipitation during the as-
similation procedure suggests that the quality of analyses is
improved when radar reflectivity volumes are assimilated. To
validate this result, the accuracy of QPF for the 22 forecasts
initialized for each experiment is evaluated. In order to give
an insight into how analysis affects a forecast, hourly fore-
cast precipitation from analyses on 3 February at 12:00 UTC
is shown in Fig. 4. Each column represents different lead
times, from +1 to +3 h going from left to right. The first
row is the observed rainfall estimated from radars corrected
by rain gauges, that is, the observed field employed for SAL
and FSS described in Sect. 3. The shaded yellow area high-
lights the acquisition domain of the Italian radar network.
The other rows are, in order from top to bottom, the fore-
casts of experiments conv60_nolhn, conv60, rad60_nolhn
and rad60. Forecast precipitation of conv60_nolhn is too
weak and too spread out, especially at lead time +2 h, in
which large nuclei are forecast west of 12◦ E. A significant
improvement at +1 h is obtained when considering conv60,
even if a strong unobserved nucleus is forecast near 45.5◦ N
13.5◦ E, while at +2 h and especially at +3 h the precipi-
tation is completely misplaced. When considering forecasts
initialized from rad60_nolhn and rad60, rainfall accuracy at
+1 h is further enhanced in terms of location. Moreover, a
significant improvement of both experiments compared to
conv60_nolhn and conv60 can be noticed in location and in-
tensity at lead times +2 and +3 h. In particular, rad60 is the
only one able to forecast nuclei of the correct intensity, with
just a slight misplacement error.

For an objective verification of QPF, hourly precipitation
of the 22 forecasts initialized from the analyses of each ex-
periment is verified using SAL; to detect rainfall objects, a
1 mm threshold is set. The verification using a threshold of
3 mm is also performed but, since results do not differ sig-
nificantly from those obtained with a 1 mm threshold, they

are not shown here. Following the approach of Davolio et al.
(2017), in Fig. 5 the average of the absolute value of each
component of SAL is plotted as a function of lead time. Al-
though forecasts are up to 24 h, the verification is shown only
for the first 8 h, since after this lead time scores of the dif-
ferent experiments become very close. The average is com-
puted considering only cases in which the observed or fore-
cast rainfall field consists of at least 1000 grid points, which
is approximately equal to an area of 50× 50 km2. Using the
absolute value of the components of SAL, only the magni-
tude of the error is considered, losing the information on the
type of error (e.g. for A, an overestimation of forecast pre-
cipitation cannot be distinguished from an underestimation).
This choice slightly limits the potential of SAL but provides
an intuitive picture of the overall performance of each exper-
iment.

Comparing conv60_nolhn to rad60_nolhn, QPF accuracy
is slightly improved when forecasts are initialized from anal-
yses obtained by assimilating both conventional data and re-
flectivity volumes instead of employing only conventional
data. In fact, at lead times +1 and +2 h values of each com-
ponent of SAL of rad60_nolhn are smaller than those of
conv60_nolhn. An improvement can be noticed also at +3 h
in the A component, while S and L are substantially un-
affected. At +4 h S and A are improved, while L is very
slightly deteriorated. From +5 h onwards, slight improve-
ments and deteriorations alternate in an incoherent manner;
therefore, we can conclude that the impact on QPF of using
conv60_nolhn or rad60_nolhn analyses is substantially neu-
tral.

The accuracy of QPF obtained by assimilating conven-
tional data is improved at lead times +1 and +2 h by acti-
vating LHN during the assimilation procedure: all compo-
nents of SAL for the conv60 experiment are smaller than
those of conv60_nolhn. The positive impact of LHN is al-
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Figure 4. In panel (a), the observed field, consisting of hourly rainfall estimated from radars corrected by rain gauges, is shown for 8 February
at 13:00, 14:00 and 15:00 UTC; the shaded yellow area highlights the acquisition domain of the Italian radar network. In the subsequent
rows, forecast hourly precipitation of experiments conv60_nolhn (b), conv60 (c), rad60_nolhn (d) and rad60 (e) initialized on 3 February at
12:00 UTC is shown. Each column represents different lead times, from +1 to +3 h going from left to right.

ready lost at +3 h (in particular, a significant degradation in
the L component is observed) but, again, a benefit can be ob-
tained by also assimilating reflectivity volumes. In fact, al-
though at +1 h the structure and amplitude errors of rad60
are larger than those of conv60 (while the location error is
slightly smaller), from +2 to +4 h each component of SAL
is smaller, indicating a clear improvement in QPFs accuracy.
Again, from +5 h onwards, the impact of initializing fore-
casts from different analyses becomes neutral. Regarding the
combined use of LHN and the assimilation of reflectivity vol-
umes through KENDA, at +1 h the S component for rad60
is slightly larger than that of rad60_nolhn, while A and L are
almost equal. From +2 to +4 h each component of SAL of

rad60 is always equal to or slightly smaller than the corre-
sponding one of rad60_nolhn.

Finally, to strengthen the results obtained using SAL over
northern Italy, the verification of QPF is extended to the
whole country of Italy employing FSS. Results are shown
in Fig. 6 for two thresholds: 1 mm (solid lines) and 5 mm
(dashed lines). Regarding the 1 mm threshold, a strong im-
provement in QPF accuracy can be noticed at +1 h when re-
flectivity volumes are assimilated (rad60_nolhn and rad60
experiments). At this lead time also, only the use of LHN
(conv60) is able to improve significantly the assimilation of
conventional data (conv60_nolhn). At +2 h the FSS value
of the two experiments in which reflectivities are assimi-
lated is still slightly larger than that of conv60_nolhn, while
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Figure 5. Average of the absolute value of each component of SAL
over the 22 forecasts initialized from conv60_nolhn (blue), conv60
(red), rad60_nolhn (orange) and rad60 (green) analyses. Objects are
selected using a threshold of 1 mm in hourly accumulated precipita-
tion fields. Cases in which the observed precipitation field consists
of less than 1000 points are not taken into account in the average.

from +3 h onwards differences become very small. Regard-
ing conv60, the QPF accuracy strongly worsens between +2
and +4 h, and it is the worst among the four experiments.
Similar conclusions hold when the 5 mm threshold is con-
sidered but, in this case, QPF of experiments in which re-
flectivity volumes are assimilated outperforms conv60 even
at the first hour of forecast. Furthermore, values of FSS of
rad60_nolhn are slightly larger than those of rad60 between
+2 and +4 h.

In conclusion, summarizing the verification with SAL and
FSS, at lead time +1 h the assimilation of both conventional
data and reflectivity volumes (rad60 and rad60_nolhn) has a
positive impact on QPF accuracy compared to the assimila-
tion of only conventional data (conv60_nolhn). The improve-
ment is seen not only where reflectivities are assimilated
(northern Italy), but also over a much larger area (the whole
country of Italy). Verification with SAL shows that a slight
positive impact over northern Italy holds up to +4 h, while
FSS scores reveal a benefit up to +2 h over Italy for both 1
and 5 mm thresholds. The two experiments in which reflec-
tivity volumes are assimilated do not substantially improve
the QPF accuracy at +1 h of the experiment in which only
conventional data are assimilated in combination with LHN

Figure 6. Fractions skill score as a function of lead time for
conv60_nolhn (blue), conv60 (red), rad60_nolhn (orange) and
rad60 (green). Verification is performed considering hourly precip-
itation and 1 mm (solid lines) and 5 mm (dashed lines) thresholds.

(conv60). However, they remarkably outperform it from +2
to +4 h, as highlighted by both SAL and FSS. In this case,
the positive impact is even enhanced when the 5 mm thresh-
old is considered.

Finally, regarding the use of LHN combined with the as-
similation of reflectivity volumes, SAL shows comparable
results between rad60 and rad60_nolhn at +1 h, while QPF
accuracy of rad60 is very slightly enhanced compared to
rad60_nolhn between +2 and +4 h. Verification with FSS
does not show significant differences between the two ex-
periments for the 1 mm threshold, while rad60_nolhn very
slightly outperforms rad60 at +2 and +3 h for the 5 mm
threshold. Therefore, we can conclude that QPF accuracy
is substantially unaffected by assimilating twice information
derived from radar. On the basis of this result, even if we
recognize that the combined assimilation of reflectivity vol-
umes through KENDA and SRI by LHN may not be a rig-
orous process from a theoretical point of view, it is decided
to keep the LHN for the subsequent experiments. In fact, this
choice does not affect negatively the results of the sensitivity
tests that are presented in this work and, at the same time,
the LHN allows one to use radar-derived information on the
state of the atmosphere in the whole country of Italy, despite
reflectivity volumes being assimilated, at present, only over
northern Italy.
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4.2 Impact of the length of the assimilation cycles

To obtain some insights into this topic, assimilation cycles of
15 and 30 min (respectively rad15 and rad30) are tested and
the results are compared to those obtained with the 60 min
window (rad60) discussed in the previous subsection. Fur-
thermore, an experiment in which observations are assimi-
lated only if collected during the last 15 min of hourly as-
similation cycles is performed (rad60_lst15). Accordingly,
the total amount of assimilated data is reduced and the incre-
ments computed by the LETKF scheme should be more ap-
propriate for computing the analysis, since the observations
time is always very close to the analysis time.

In the same way as described in the previous subsection,
QPF accuracy of the 22 forecasts initialized for each ex-
periment is verified employing SAL and FSS. Results are
shown, respectively, in Figs. 7 and 8 for rad15 (red), rad30
(orange), rad60 (green) and rad60_lst15 (blue). Consider-
ing SAL verification, at lead time +1 h the shorter the cy-
cle the smaller the error in structure and amplitude; however,
the smallest location error among the experiments which dif-
fer only for the cycle length is associated with rad30, while
rad15 and rad60 are almost equal. Moreover, at lead time
+1 h QPF of rad60_lst15 is also more accurate than that of
rad60 in each component. Between+2 and+4 h, both rad15
and rad30 always have larger errors than rad60, with the
only exception of S at +4 h. In particular, a relevant wors-
ening in the location of rainfall nuclei is observed at +3 h.
Regarding rad60_lst15, the comparison with rad60 in the
same forecast range reveals that the differences are always
small but, except for S at +2 and +3 h, rad60 slightly out-
performs rad60_lst15. From lead time +5 h onwards, differ-
ences among the four experiments become small and the re-
sults are mixed.

Extending the verification to the whole country of Italy
employing FSS, at+1 h no significant differences can be no-
ticed among the four experiments when the 1 mm threshold
is considered. Between +2 and +4 h, as observed with SAL
verification, the shortening of the assimilation cycle worsens
the QPF accuracy. Similarly, the differences between rad60
and rad60_lst15 are very small but, contrary to what was
observed with SAL, in this case the latter very slightly out-
performs the former. From +5 h onwards, FSS values of all
the experiments are almost equal. When the 5 mm thresh-
old is considered, the comparison between rad15, rad30 and
rad60 leads to the same results as those observed for the
1 mm threshold, with even more pronounced differences at
lead times +2 and +3 h. Regarding rad60_lst15, a signifi-
cant improvement compared to rad60 is noticed at +1 h and
a slightly positive impact still holds at the subsequent lead
times.

In summary, assimilating observations collected in the
last 15 min of hourly cycles does not affect significantly
the QPF accuracy when a 1 mm threshold is considered:
at +1 h a slight improvement is observed only over north-

Figure 7. As in Fig. 5 but considering experiments rad15 (red),
rad30 (orange), rad60 (green) and rad60_lst15 (blue).

ern Italy, while from +2 h onwards the mixed results ob-
tained with FSS and SAL suggest a neutral impact. How-
ever, rad60_lst15 slightly outperforms rad60 over the whole
country of Italy when the 5 mm threshold is considered. Re-
garding the length of assimilation cycles, when it is short-
ened a slight improvement on QPF accuracy is observed at
+1 h over northern Italy, but the impact over Italy is neutral.
Thereafter, from +2 to +4 h, a clear worsening is observed
both where assimilation is performed and in the rest of Italy.
To investigate whether this worsening is due to the imbalance
issue, the kinetic energy (KE) spectra of the experiments are
computed following the method described in Errico (1985).
Curves displayed in Fig. 9 are obtained as an average over the
whole assimilation period (from 3 February at 06:00 UTC to
7 February at 00:00 UTC) of KE spectra computed each hour
using analysis values of u, v and w over the whole domain.
Kinetic energy spectra of rad15 (red) and rad60 (green) are
almost overlapping, even at very small wavelengths, indicat-
ing that shortening the length of cycles from 60 to 15 min
does not introduce imbalances into the analyses (Skamarock,
2004). Furthermore, both spectra have a −5/3 dependence
on the wavenumber beyond a wavelength of 15–20 km, in
agreement with observed spectra at the mesoscale (Nastrom
and Gage, 1985). The same considerations also apply to KE
spectra of rad30, which is not shown. Therefore, with the
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Figure 8. As in Fig. 6 but considering experiments rad15 (red),
rad30 (orange), rad60 (green) and rad60_lst15 (blue).

current set-up, the use of a sub-hourly window length de-
grades QPF accuracy, but this is not due to the introduction
of imbalances into the analysis. A possible different explana-
tion is that the reduced analysis error associated with rad15
and rad30 compared to rad60 makes the ensemble employed
for the LETKF scheme too small to correctly characterize the
forecast error, as suggested in Uboldi and Trevisan (2015).

4.3 Impact of changing the reflectivity observational
error

A set of experiments is performed to investigate the im-
pact of the reflectivity observational error in the assimilation
scheme. In addition to the value of 5 dBZ employed so far,
which was estimated by applying the diagnostic described in
Desroziers et al. (2005) to this case study, two other values
of roe are tested: 10 and 0.5 dBZ. The former is employed
by Bick et al. (2016) for the assimilation of reflectivity vol-
umes from the German radar network using KENDA and
COSMO and, therefore, should be reasonable also for the
present study. The latter is a deliberately extreme value that
may be chosen in the case of great confidence in the qual-
ity of radar observations. These two different values of roe
are used in assimilation cycles of 60 min (rad60_roe0.5 and
rad60_roe10) and 15 min (rad15_roe0.5 and rad15_roe10).
Therefore, they can be compared with the experiments with
our standard value of roe= 5dBZ, respectively rad60 and
rad15.

Results of QPF verification in terms of SAL and FSS are
reported, respectively, in Figs. 10 and 11. Regarding the ex-
periments with a 60 min assimilation cycle, SAL verification

Figure 9. Kinetic energy (KE) spectra computed following the
method described by Errico (1985). Each curve is obtained by av-
eraging KE spectra with a frequency of 1 h during the assimilation
procedure and employing analysis values of u, v and w over the
whole model domain. The spectra are displayed for experiments
rad15 (red), rad60 (green), rad15_roe0.5 (grey) and rad60_roe0.5
(violet). The dashed black line represents a function with a depen-
dence on the wavenumber equal to −5/3.

(left panel) reveals that rad60_roe0.5 slightly reduces struc-
ture and amplitude errors on QPF at lead time+1 h compared
to rad60, but the location error is very slightly increased.
From+2 to+4 h, rad60_roe0.5 has a larger error in all com-
ponents, except S at +2 and +3 h. In particular, the A com-
ponent is remarkably worsened at+4 h and the L component
at +2 and +3 h. As observed for the previous experiments,
from+5 h onwards the results become mixed. When compar-
ing rad60_roe10 to rad60, differences are small and mixed
in the whole forecast range. The FSS verification carried out
over the whole country of Italy substantially confirms what
is observed with SAL: rad60_roe0.5 worsens QPF accuracy
from +2 to +4 h and the differences compared to rad60 are
even enhanced and extended to +1 h when the 5 mm thresh-
old is considered, and, at the same time, the impact of using
a value of roe equal to 10 dBZ instead of 5 dBZ as a neutral
impact over the whole forecast range.

With regards to 15 min assimilation cycles, rad15_roe0.5
dramatically worsens QPF accuracy over northern Italy in
terms of structure (right panel in Fig. 10) up to +5 and up
to +12 h in terms of amplitude and location (the range be-
tween +9 and +12 h is not shown). In this regard, the veri-
fication of individual forecasts (not shown here) reveals that
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Figure 10. As in Fig. 5 but considering (a) experiments rad60_roe0.5 (violet), rad60 (green) and rad60_roe10 (orange), and (b) experiments
rad15_roe0.5 (grey), rad15 (red) and rad15_roe0.5 (blue).

Figure 11. As in Fig. 6 but considering (a) experiments rad60_roe0.5 (violet), rad60 (green) and rad60_roe10 (orange), and (b) experiments
rad15_roe0.5 (grey), rad15 (red) and rad15_roe0.5 (blue).

the large error in the A component is due to a systematic
underestimation of the average precipitation over the do-
main. This marked worsening can be appreciated also with
FSS verification (right panel in Fig. 11), especially for the
1 mm threshold. When comparing results of SAL verification

for rad15_roe10 and rad15, differences are small and mixed
over the whole forecast range. However, in this case, FSS re-
veals that the former slightly outperforms the latter between
+2 and+4 h when the 1 mm threshold is considered, and this
is enhanced when considering the 5 mm threshold.
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Figure 12. Mean sea level pressure (a–c) and specific humidity at 850 hPa (d–f) analysis on 5 February at 12:00 UTC for IFS (a, d)
rad60 (b, e) and rad15_roe0.5 (c, f).

The overall poor quality of rad15_roe0.5 forecasts is the
direct consequence of the poor quality of the analyses from
which they are initialized. As an example, in Fig. 12 the mean
sea level pressure (MSLP) and specific humidity at 850 hPa
of rad15_roe0.5 (right column) analysis on 5 February at
12:00 UTC are shown and compared with the same quantities
for the analysis of rad15 (central column) and the Integrated
Forecasting System (IFS) of ECMWF (left column). Slight
variations can be observed between IFS and rad15 analy-
ses and it seems reasonable that they may simply arise from
differences between models and assimilation systems. Con-
versely, rad15_roe0.5 analysis exhibits a noticeable increase
in MSLP and a decrease in specific humidity over northern
Italy. This is in agreement with the decrease in forecast pre-
cipitation previously described.

In the same way as described in Sect. 4.2, KE spectra are
computed for rad15_roe0.5 and rad60_roe0.5 and displayed
in Fig. 9. In both cases, at the smallest wavelength the KE
is significantly greater that that of rad15 or rad60, and this
is particularly evident for rad15_roe0.5. This behavior is in-
dicative of the presence of some undesired noise at small
scales (Skamarock, 2004). Therefore, employing a value of
roe equal to 0.5 dBZ, the assimilation system is not able to
correctly remove small-scale noise, especially when really
short cycles are employed. Furthermore, the excess of energy
associated with the highest wavenumber modes propagates to
the larger scales and the slope of the curves at wavelengths
greater than 15 km differs from −5/3.

5 Conclusions

The assimilation of radar data in an operational set-up is a
challenging issue. Most of the previous studies are devoted
to the assimilation of rainfall estimated from radar data, and
they are currently widely employed in meteorological cen-
tres all over the world. The continuous increase in computer
resources now allows one to directly assimilate reflectivity
volumes, but few studies have been dedicated to testing the
assimilation of these observations in an operational context.
In the present work, the assimilation of reflectivity volumes
using the LETKF scheme developed for the high-resolution
COSMO model is evaluated. A case study of 4 days in Febru-
ary 2017 is carried out using data from four radars over north-
ern Italy. The quality of the analyses generated by the data as-
similation system is assessed in terms of the accuracy of QPF
which is verified using SAL (approximately in the region
where reflectivity volumes are assimilated) and FSS (over the
whole country of Italy).

The assimilation of both conventional data and radar re-
flectivity volumes in combination with LHN (rad60) im-
proves QPF accuracy compared to our operational set-up
(conv60), in which only conventional data are employed to-
gether with LHN, and to conv60_nolhn, in which conven-
tional observations are assimilated without performing LHN.
The improvement compared to conv60 is remarkable be-
tween lead times +2 and +4 h and observed with both SAL
and FSS. Regarding the comparison with conv60_nolhn, the
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improvement is consistent at +1 h and holds (attenuated) up
to +4 h over northern Italy, while it becomes irrelevant over
Italy from lead time +3 h. Similar improvements are ob-
served when both conventional data and reflectivity volumes
are assimilated without LHN (rad60_nolhn), suggesting that
the combined use of radar volumes and SRI, not rigorous
from a theoretical point of view, does not degrade the results.
This can be due to the different nature of the observed values:
in case of reflectivity volumes the measure is direct, while for
SRI the field is indirectly calculated using an empiric rela-
tionship between reflectivity and rain rate. Furthermore, the
assimilation schemes also differ dramatically.

In this context, the assimilation of observations col-
lected only in the last 15 min of each assimilation cycle
(rad60_lst15) further slightly enhances the positive impact
of assimilating reflectivity volumes. This result is observed
when considering precipitation more intense than 5 mm h−1,
while the impact of using rad60_lst15 instead of rad60 anal-
yses is neutral when a 1 mm threshold is employed. Taking
into account that this configuration also reduces the compu-
tational cost associated with the assimilation of radar data,
it seems to be the most promising for an operational im-
plementation. However, further tests would be necessary to
evaluate whether the same conclusion arises when only ob-
servations at the analysis time are assimilated. Regarding the
length of assimilation cycles, the shortening of their length to
30 and 15 min slightly improves QPF accuracy at lead time
+1 h over the region where they are assimilated, but worsens
results between lead times +2 and +4 h, both over northern
Italy and in the rest of the country. This is not due to the
introduction of imbalances in the analyses. A possible ex-
planation, which needs further investigation, is that the more
frequent assimilation reduces the analysis error, potentially
making the ensemble spread too small to properly character-
ize the forecast error (Uboldi and Trevisan, 2015).

With regards to the observational error, it is found that a
value of roe equal to 0.5 dBZ negatively affects the quality
of the analyses and of the subsequent forecasts, because the
model is not able to remove noise at the smallest scales. This
leads to large errors in all prognostic fields in the area where
radar data are assimilated and, as a consequence, to a very
poor quality of the forecasts. This is particularly significant
when 15 min assimilation cycles are employed, in which case
forecast precipitation is strongly underestimated and mis-
placed. Conversely, a value of 10 dBZ, that is, a value which
is twice that estimated using Desroziers statistics, leads to
similar results obtained with roe= 5 dBZ, but slightly im-
proves QPF accuracy when 15 min cycles are employed.

The observed improvement in QPF accuracy associated
with the assimilation of reflectivity volumes is promising,
even if it is limited to only the first few hours of forecast.
Other tests are necessary to validate whether this improve-
ment holds in other synoptic conditions and for longer case
studies. Furthermore, several tests need to be performed to
extend the impact of the assimilation beyond the first few

hours of forecast. In particular, the value of the reflectivity
observational error seems to have a strong impact on QPF
accuracy. Therefore, it seems reasonable that a further im-
provement can be achieved when roe is made dependent on
the range, elevation, radar station and meteorological condi-
tion, but a better comprehension and estimation of this value
is mandatory before testing more complex configurations.
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