Articles | Volume 25, issue 3
https://doi.org/10.5194/npg-25-481-2018
https://doi.org/10.5194/npg-25-481-2018
Research article
 | Highlight paper
 | 
09 Jul 2018
Research article | Highlight paper |  | 09 Jul 2018

Parametric covariance dynamics for the nonlinear diffusive Burgers equation

Olivier Pannekoucke, Marc Bocquet, and Richard Ménard

Related authors

HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024,https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023,https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
A comparison of two nonlinear data assimilation methods
Vivian A. Montiforte, Hans E. Ngodock, and Innocent Souopgui
Nonlin. Processes Geophys., 31, 463–476, https://doi.org/10.5194/npg-31-463-2024,https://doi.org/10.5194/npg-31-463-2024, 2024
Short summary
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary

Cited articles

Abd-el-Malek, M. B. and El-Mansi, S. M. A.: Group theoretic methods applied to Burgers' equation, J. Comput. Appl. Math., 115, 1–12, https://doi.org/10.1016/s0377-0427(99)00170-3, 2000.
Apte, M., Auroux, D., and Ramaswamy, M.: Variational data assimilation for discrete Burgers equation, Electron. J. Differ. Eq., 19, 15–30, 2010.
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, https://doi.org/10.1002/qj.2711, 2016.
Bouttier, F.: The dynamics of error covariances in a barotropic model, Tellus A, 45, 408–423, 1993.
Burgers, J.: The nonlinear diffusion equation: asymptotic solutions and statistical problems, D. Reidel Publishing Company, Dordrecht, Holland, https://doi.org/10.1007/978-94-010-1745-9, 1974.
Download
Short summary
The forecast of weather prediction uncertainty is a real challenge and is crucial for risk management. However, uncertainty prediction is beyond the capacity of supercomputers, and improvements of the technology may not solve this issue. A new uncertainty prediction method is introduced which takes advantage of fluid equations to predict simple quantities which approximate real uncertainty but at a low numerical cost. A proof of concept is shown by an academic model derived from fluid dynamics.