Articles | Volume 25, issue 3
https://doi.org/10.5194/npg-25-481-2018
https://doi.org/10.5194/npg-25-481-2018
Research article
 | Highlight paper
 | 
09 Jul 2018
Research article | Highlight paper |  | 09 Jul 2018

Parametric covariance dynamics for the nonlinear diffusive Burgers equation

Olivier Pannekoucke, Marc Bocquet, and Richard Ménard

Related authors

HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024,https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023,https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Explaining the high skill of reservoir computing methods in El Niño prediction
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025,https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Multilevel Monte Carlo methods for ensemble variational data assimilation
Mayeul Destouches, Paul Mycek, Selime Gürol, Anthony T. Weaver, Serge Gratton, and Ehouarn Simon
Nonlin. Processes Geophys., 32, 167–187, https://doi.org/10.5194/npg-32-167-2025,https://doi.org/10.5194/npg-32-167-2025, 2025
Short summary
Dynamic–statistic combined ensemble prediction and impact factors of China's summer precipitation
Xiaojuan Wang, Zihan Yang, Shuai Li, Qingquan Li, and Guolin Feng
Nonlin. Processes Geophys., 32, 117–130, https://doi.org/10.5194/npg-32-117-2025,https://doi.org/10.5194/npg-32-117-2025, 2025
Short summary
Bridging Data Assimilation and Control: Ensemble Model Predictive Control for High-Dimensional Nonlinear Systems
Kenta Kurosawa, Atsushi Okazaki, Fumitoshi Kawasaki, and Shunji Kotsuki
EGUsphere, https://doi.org/10.5194/egusphere-2025-595,https://doi.org/10.5194/egusphere-2025-595, 2025
Short summary
Evaluation of Effectiveness of Intervention Strategy in Control Simulation Experiment through Comparison with Model Predictive Control
Rikuto Nagai, Yang Bai, Masaki Ogura, Shunji Kotsuki, and Naoki Wakamiya
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-26,https://doi.org/10.5194/npg-2024-26, 2024
Revised manuscript accepted for NPG
Short summary

Cited articles

Abd-el-Malek, M. B. and El-Mansi, S. M. A.: Group theoretic methods applied to Burgers' equation, J. Comput. Appl. Math., 115, 1–12, https://doi.org/10.1016/s0377-0427(99)00170-3, 2000.
Apte, M., Auroux, D., and Ramaswamy, M.: Variational data assimilation for discrete Burgers equation, Electron. J. Differ. Eq., 19, 15–30, 2010.
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, https://doi.org/10.1002/qj.2711, 2016.
Bouttier, F.: The dynamics of error covariances in a barotropic model, Tellus A, 45, 408–423, 1993.
Burgers, J.: The nonlinear diffusion equation: asymptotic solutions and statistical problems, D. Reidel Publishing Company, Dordrecht, Holland, https://doi.org/10.1007/978-94-010-1745-9, 1974.
Download
Short summary
The forecast of weather prediction uncertainty is a real challenge and is crucial for risk management. However, uncertainty prediction is beyond the capacity of supercomputers, and improvements of the technology may not solve this issue. A new uncertainty prediction method is introduced which takes advantage of fluid equations to predict simple quantities which approximate real uncertainty but at a low numerical cost. A proof of concept is shown by an academic model derived from fluid dynamics.
Share