Articles | Volume 25, issue 3
Research article
04 Sep 2018
Research article |  | 04 Sep 2018

Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error

Colin Grudzien, Alberto Carrassi, and Marc Bocquet

Abstract. The ensemble Kalman filter and its variants have shown to be robust for data assimilation in high dimensional geophysical models, with localization, using ensembles of extremely small size relative to the model dimension. However, a reduced rank representation of the estimated covariance leaves a large dimensional complementary subspace unfiltered. Utilizing the dynamical properties of the filtration for the backward Lyapunov vectors, this paper explores a previously unexplained mechanism, providing a novel theoretical interpretation for the role of covariance inflation in ensemble-based Kalman filters. Our derivation of the forecast error evolution describes the dynamic upwelling of the unfiltered error from outside of the span of the anomalies into the filtered subspace. Analytical results for linear systems explicitly describe the mechanism for the upwelling, and the associated recursive Riccati equation for the forecast error, while nonlinear approximations are explored numerically.

Short summary
Using the framework Lyapunov vectors, we analyze the asymptotic properties of ensemble based Kalman filters and how these are influenced by dynamical chaos, especially in the context of random model errors and small ensemble sizes. Particularly, we show a novel derivation of the evolution of forecast uncertainty for ensemble-based Kalman filters with weakly-nonlinear error growth, and discuss its impact for filter design in geophysical models.