Articles | Volume 25, issue 2
Nonlin. Processes Geophys., 25, 355–374, 2018
Nonlin. Processes Geophys., 25, 355–374, 2018

Research article 03 May 2018

Research article | 03 May 2018

Feature-based data assimilation in geophysics

Matthias Morzfeld et al.

Related authors

A comprehensive model for the kyr and Myr timescales of Earth's axial magnetic dipole field
Matthias Morzfeld and Bruce A. Buffett
Nonlin. Processes Geophys., 26, 123–142,,, 2019
Short summary

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41,,, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22,,, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500,,, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487,,, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss.,,, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., and Stuart, A.: Importance sampling: computational complexity and intrinsic dimension, Stat. Sci., 32, 405–431, 2017. a, b, c
Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T. Signal Proces., 50, 174–188, 2002. a
Atkins, E., Morzfeld, M., and Chorin, A.: Implicit particle methods and their connection with variational data assimilation, Mon. Weather Rev., 141, 1786–1803, 2013. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 252, 45–55, 2015. a
Bishop, C.: Pattern Recognition and Machine Learning, Springer-Verlag, New York, USA, 2006. a
Short summary
Many applications in science require that computational models and data be combined. In a Bayesian framework, this is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and data in this way can be unnecessary or impossible. This issue can be addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data.