Articles | Volume 24, issue 4
https://doi.org/10.5194/npg-24-737-2017
https://doi.org/10.5194/npg-24-737-2017
Research article
 | 
06 Dec 2017
Research article |  | 06 Dec 2017

Optimal heavy tail estimation – Part 1: Order selection

Manfred Mudelsee and Miguel A. Bermejo

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the Matrix Profile
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2024-13,https://doi.org/10.5194/npg-2024-13, 2024
Revised manuscript accepted for NPG
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
A two-fold deep-learning strategy to correct and downscale winds over mountains
Louis Le Toumelin, Isabelle Gouttevin, Clovis Galiez, and Nora Helbig
Nonlin. Processes Geophys., 31, 75–97, https://doi.org/10.5194/npg-31-75-2024,https://doi.org/10.5194/npg-31-75-2024, 2024
Short summary

Cited articles

Anderson, P. L. and Meerschaert, M. M.: Modeling river flows with heavy tails, Water Resour. Res., 34, 2271–2280, 1998.
Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics, Nature, 435, 207–211, 2005.
Cronin, T. M.: Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, New York, 441 p., 2010.
Danielsson, J., de Haan, L., Peng, L., and de Vries, C. G.: Using a bootstrap method to choose the sample fraction in tail index estimation, J. Multivar. Anal., 76, 226–248, 2001.
D'Arrigo, R., Abram, N., Ummenhofer, C., Palmer, J., and Mudelsee, M.: Reconstructed streamflow for Citarum river, Java, Indonesia: Linkages to tropical climate dynamics, Clim. Dynam., 36, 451–462, 2011.
Download
Short summary
Risk analysis of extremes has high socioeconomic relevance. Of crucial interest is the tail probability, P, of the distribution of a variable, which is the chance of observing a value equal to or greater than a certain threshold value, x. Many variables in geophysical systems (e.g. climate) show heavy tail behaviour, where P may be rather large. In particular, P decreases with x as a power law that is described by a parameter, α. We present an improved method to estimate α on data.