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Abstract. The tail probability, P , of the distribution of a
variable is important for risk analysis of extremes. Many
variables in complex geophysical systems show heavy tails,
where P decreases with the value, x, of a variable as a power
law with a characteristic exponent, α. Accurate estimation of
α on the basis of data is currently hindered by the problem
of the selection of the order, that is, the number of largest
x values to utilize for the estimation. This paper presents a
new, widely applicable, data-adaptive order selector, which
is based on computer simulations and brute force search. It
is the first in a set of papers on optimal heavy tail estimation.
The new selector outperforms competitors in a Monte Carlo
experiment, where simulated data are generated from stable
distributions and AR(1) serial dependence. We calculate er-
ror bars for the estimated α by means of simulations. We
illustrate the method on an artificial time series. We apply it
to an observed, hydrological time series from the River Elbe
and find an estimated characteristic exponent of 1.48± 0.13.
This result indicates finite mean but infinite variance of the
statistical distribution of river runoff.

1 Introduction

Not all geophysical variables obey a Gaussian (normal) dis-
tribution. This is true not only for the central part, but also for
the extremal part (tail) of a distribution. Instead of a Gaussian
exponential behaviour, we often observe a Pareto tail (power
law) with a distribution function, F , of a variable, X,

F(x)= P(X > x)∝ x−α, (1)

that holds above some threshold, x > u≥ 0. The characteris-
tic exponent or heavy tail index parameter, α > 0, determines
the probability, P , of observing extreme values. Its knowl-

edge is of crucial importance in applied risk analysis, for ex-
ample, of floods (Jongman et al., 2014).

Theoretical explanations of the heavy tail behaviour rest
on multiplicative or non-linear interaction of variables in
complex geophysical systems. Such derivations exist, for ex-
ample, for the variables rainfall (Wilson and Toumi, 2005)
and air pressure (Sardeshmukh and Sura, 2009). Other com-
plex systems, such as finance (Malevergne and Sornette,
2006) or society (Barabási, 2005; Helbing, 2013), may also
exhibit heavy tail phenomena.

Many statistical distributions have heavy tails. A particu-
larly useful class of those are the stable distributions (Nolan,
2003), for which the distribution of the sum has the same
shape (up to scale and shift) as each of the independent,
identically distributed stable summands. Stable distributions
have a heavy tail index between 0 and 2. They include Gaus-
sian (α = 2), Cauchy (α = 1) and Lévy (α = 1/2) distribu-
tions. The fact that for other α-values no analytical expres-
sion of the distribution exists does not reduce the usefulness
for analysing extremes. A more serious point is that heavy
tail distributions in general, not only stable distributions, may
have infinite statistical moments: of first order (mean) for
α < 1 and of second order (variance) for α < 2. Therefore, in
analytical practice, research questions arise such as the fol-
lowing. (1) How realistic are infinite moments for the studied
geophysical variable? (2) How serious are the consequences
of heavy tails and the resulting inflated estimation accuracy
of geophysical system parameters? (3) Does the heavy tail
law (Eq. 1) hold, not over the full but just a restricted x-
range, which may then be compatible with finite moments
(Mantegna and Stanley, 1995)?

The accurate statistical estimation of the heavy tail index
on the basis of a set of data, {x(i)}ni=1, of size n, is therefore
important. An estimator, α̂, which may be called “classic”,
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was devised by Hill (1975). Let x′ denote the x-values sorted
according to descending size, x′(1)≥ x′(2)≥ ·· · ≥ x′(n).
We assume a zero sample mean (via mean subtraction). With-
out loss of generality we consider the right tail (positive val-
ues). Let there be K ≥ 2 positive x′-values. The Hill estima-
tor is

α̂k = k

[
k∑
i=1

log
x′(i)

x′(k+ 1)

]−1

, (2)

where k ≤K − 1 is denoted as order parameter. If K < 2,
then the Hill estimator cannot be applied. The selection of k
completes the estimation. Order selection has a decisive in-
fluence on α̂. However, it is still unclear how best to achieve
this, and order selection has been called the “Achilles’ heel”
of heavy tail index estimation (Resnick, 2007).

Order selection constitutes a statistical trade-off problem
(Hill, 1975). Large k leads to usage of many data points and
a small estimation variance. However, the risk then is that
points are included for which Eq. (1) does not hold (i.e. bias).
On the other hand, small k leads to a small estimation bias
and a large variance.

We assess as minor the fact that the Hill estimator is not
translation invariant (to shifts in x) (Resnick, 2007), since
there is a natural choice in the form of zero sample mean. In
geophysical analyses, such as the estimation of trend param-
eters on climate time series (Mudelsee, 2014), a by-product
is the series of residuals (data minus fit). These values are
realizations of the noise process, and they are subjected to
various forms of residual tests regarding distributional shape
and persistence. By virtue of their construction, the residuals
have zero sample mean.

There exist other estimators of α (Resnick, 2007), but here
we consider Hill and focus on order selection. We introduce
an order selector that is optimal in the sense that, for a given
estimation problem, it minimizes a root mean squared error
(RMSE) measure for α̂ in an internal (i.e. within the algo-
rithm) simulation loop. In our approach, the search for opti-
mal k is performed in a brute force manner and adaptively for
a data set. Hence, the approach is computationally intensive.

Processes in complex geophysical systems may exhibit not
only heavy tail behaviour, but also persistence in the time
domain. Let t (i) denote a time value and {t (i),x(i)}ni=1 a
time series, that is, a sample of the dynamics of a system.
Many geophysical time series have an uneven time spac-
ing (e.g. proxy series of paleoclimate obtained from natural
archives). Therefore we model the persistence in its simplest
form as a first-order autoregressive or AR(1) process on an
unevenly spaced time grid (Mudelsee, 2014),

X(1)= E(1),
X(i)= exp

[
−(T (i)− T (i− 1))/τ

]
·X(i− 1)

+
{
1− exp

[
−2(T (i)− T (i− 1))/τ

]}1/2
· E(i),

i = 2, . . .,n. (3)

T (i) is the discrete time variable, assumed to increase strictly
monotonically; E is an independent, identically distributed
random innovation with zero mean and variance σ 2; the pa-
rameter τ > 0 is called persistence time. In the case of even
spacing (T (i)− T (i− 1)= d(i)= d = const.), Eq. (3) cor-
responds to the more familiar formulation with an AR(1)
parameter a = exp(−d/τ). The heteroscedasticity in Eq. (3)
ensures stationarity of the AR(1) process for σ 2 <∞. It is
thought to be of no harm in case E is heavy tailed with in-
finite variance. The persistence time can be estimated us-
ing a least-squares criterion and numerical techniques. See
Mudelsee (2014) for more details.

We aim here for a heavy tail parameter estimation that
is accurate, widely applicable and robust (i.e. reliable even
when some underlying assumptions are not met). The selec-
tion 0≤ α ≤ 2 and k ≤K − 1 allows a wide range of possi-
ble distributions of the data-generating process. The full dis-
tribution does not need to follow Eq. (1), just the extremal
part (“distributional robustness”). The adoption of an AR(1)
model for uneven spacing (Eq. 3) ensures that for many
time series, the persistence dynamics is captured at least to
first order (“persistence robustness”). Notably included is the
persistence-free case, where time is irrelevant and only the
observed values are required. This analytical design and the
presented method are therefore applicable to many different
types of data from geophysics and disciplines beyond. We
detail the new order selector (Sect. 2) and show its superiority
in a Monte Carlo simulation experiment (Sect. 3). Simulation
is also the approach to construct error bars for α̂ (Sect. 4). We
illustrate the method via applications to artificial (Sect. 5) and
observed, hydrological time series (Sect. 6). The conclusions
(Sect. 7) address practitioners of risk analysis.

2 Order selection

To repeat the ingredients of the statistical problem, let
{t (i),x(i)}ni=1 be a time series, where the time values, t (i),
increase strictly monotonically and the x-values have a zero
mean (via mean subtraction). Let x′ denote the x-values
sorted according to descending size. Let there be K ≥ 2 pos-
itive x′-values.

Algorithm 1 gives the solution of the problem of order (k)
selection for the Hill estimator of the heavy tail parameter
(α).

Algorithm 1 is an illustration of the concept of optimal
estimation (Mudelsee, 2014). This concept roughly states
that when confronted with a complex estimation problem on
given data, the first task is then to explore the various estima-
tion techniques to find out the optimal technique. Optimality
is meant in a certain sense (e.g. RMSE). The second task is
then to apply the optimal technique to the given data. Opti-
mal estimation becomes feasible with increasing computing
power.
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Algorithm 1 Optimal order selection for the Hill estimator.

1: for k = 1 to K − 1 do
2: calculate α̂k (Eq. 2) on the data,

{
x′(i)

}n
i=1

3: calculate τ̂ using a least-squares criterion (Mudelsee, 2014)
4: for j = 1 to Ninner do
5: generate n random values from a stable distribution with

prescribed α = α̂k using the algorithm by Nolan (1997)
6: generate

{
x∗(i)

}n
i=1 from an AR(1) process (Eq. 3) on

the time grid, {t (i)}n
i=1, with prescribed τ = τ̂ and the n

random values (line 5) as innovations, E(i)
7: calculate

{
x∗′(i)

}n
i=1 from

{
x∗(i)

}n
i=1 via sorting and

mean subtraction
8: calculate α̂k,j (Eq. 2) on the data,

{
x∗′(i)

}n
i=1

9: end for
10: calculate the measure, RMSE(k)= [

∑Ninner
j=1 (̂αk,j −

α̂k)
2/Ninner]

1/2

11: end for
12: select arg min[RMSE(k)] as optimal order

In the context of heavy tail index estimation, Algorithm 1
attacks the “Achilles’ heel” problem of order selection via
brute force. The extension to other estimators is straightfor-
ward.

3 Monte Carlo experiment

We compare the optimal order selector for the Hill estimator
(Algorithm 1) with two other selectors in a Monte Carlo sim-
ulation experiment (Algorithm 2). This involves many time
series generated in a computer by means of a random number
generator (Fishman, 1996). The prescribed uneven spacing is
drawn from a gamma distribution, which may be a realistic
model for many paleoclimate time series (Mudelsee, 2014).

Algorithm 2 Monte Carlo experiment on order selection for
the Hill estimator, nsim = 10000.

1: prescribe n,τ,α and order selector (asymptotic, bootstrap or
optimal)

2: draw spacing, {d(i)}n−1
i=1 , from a gamma distribution with order

parameter 3
3: scale {d(i)}n−1

i=1 such that the average, d̄ , equals unity
4: set t (1)= 1 and t (i)= t (i− 1)+ d(i− 1) for i = 2, . . .,n
5: for j = 1 to nsim do
6: generate {x(i)}n

i=1 from an AR(1) process (Eq. 3) on the
time grid, {t (i)}n

i=1, with stable distributed (Nolan, 1997)
innovations and prescribed values for τ and α

7: select order, k
8: calculate α̂j = α̂k (Eq. 2) on the sorted and mean-subtracted

data,
{
x′(i)

}n
i=1

9: end for
10: calculate RMSEα̂ = [

∑nsim
j=1(̂αj −α)

2/nsim]
1/2

The first competitor as order selector is based on the
asymptotic normality of α̂k (Eq. 2). Hall (1982) showed

that for n→∞ and under further conditions, the expression
k1/2(̂αk−α) approaches a normal distribution with mean zero
and variance α2. This allows the construction of an order
selector based on the theoretical minimal asymptotic mean
squared error (AMSE). A caveat against any asymptotic nor-
mality argument is that it is difficult to check in practice
whether the underlying conditions are fulfilled: in particular,
how far n is away from infinity.

The second competitor aims to improve the selector
based on asymptotic normality by estimating the AMSE
via a computing-intensive bootstrap resampling procedure
(Danielsson et al., 2001). This data-adaptive order selector
possesses stronger robustness than the one based on theoreti-
cal AMSE because it makes less restrictive assumptions. The
adaptation to the data at hand makes the selector based on the
bootstrap relevant for practical applications.

There exists also the suggestion to look for a plateau of
the sequence α̂k against k as an indication of a suitable order
(Resnick, 2007). Evidently, it is not straightforward to ob-
jectively define a plateau and implement that definition in a
Monte Carlo experiment. Of higher relevance is the finding
(Sect. 5) that the optimal order can be located in a region that
does not at all resemble a plateau.

The results (Fig. 1) show that the new optimal order selec-
tor outperforms (i.e. has a smaller RMSEα̂) the two competi-
tors. This is true over a considerable range of design param-
eters (n,τ,α). The success of the optimal order selector may
at least partly be due to the situation that the normality of α̂,
on which the two competing selectors are based, has not been
approached in the simulation world. On the other hand, the
prescribed stable distributional shape of the data-generating
process fits particularly well to the optimal selector (Algo-
rithm 1). This point will be investigated in a future analysis
of the optimal selector under varied Monte Carlo designs.

4 Error bars

To adapt the preface to our book on climate time se-
ries analysis (Mudelsee, 2014): we wish to know the truth
about a geophysical system, but have only a limited sam-
ple, {t (i),x(i)}ni=1, influenced by various sources of noise.
Therefore we cannot expect our estimate, α̂, which is based
on data, to equal the truth. However, we can determine the
typical size of that deviation: an error bar. Error bars help to
critically assess estimation results, they prevent us from mak-
ing overstatements, and they guide us on our way to enhanc-
ing geophysical knowledge. Estimates without error bars are
useless.

The Monte Carlo experiment (Sect. 3) contains a method
to construct error bars. For this purpose, Algorithm 2 may
be adapted as follows. Line 1: take over n from the sample,
and set τ = τ̂ and α = α̂. Lines 2 to 4: take over {t (i)}ni=1
from the sample. Line 5: set nsim = 100. Report RMSEα̂ as
an error bar. This uncertainty measure has the advantage that
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Figure 1. RMSE of the estimated heavy tail parameter in depen-
dence on data size for the Hill estimator and various order selec-
tors: optimal (Algorithm 1), asymptotic normality and bootstrap.
The Monte Carlo design parameters are prescribed persistence time,
τ = 0.0 (a, c, e, g) and τ = 0.8 (b, d, f, h); prescribed heavy-tail pa-
rameter, α = 0.5 (a, b), α = 1.0 (c, d), α = 1.5 (e, f) and α = 2.0
(g, h); and number of simulations, nsim = 10000. Note the broken
y axes.

it includes not only estimation variance, but also bias. This
makes it more reliable than, for example, the standard error.
This error bar construction is also used for the persistence
time (RMSEτ̂ ).

A note on the selection of nsim = 100 for error bar determi-
nation: we explored the influence of nsim on the accuracy of
RMSEα̂ in another Monte Carlo experiment. We varied nsim
and analysed the coefficient of variation (CV) of RMSEα̂ .
The CV is given by the standard deviation of RMSEα̂ , which
is calculated over a number of external (i.e. outside of the al-
gorithm) runs, divided by the mean calculated over the runs.
One run consists in generating a series and estimating the
tail index with RMSEα̂ . The number of runs was 10 000. We
found that for a number of nsim ≈ 100, a saturation behaviour
of the CV sets in, while for smaller nsim values, the CV de-
creases with nsim. Further increasing nsim had no measur-
able effect on the accuracy of RMSEα̂ . The value of 100 also

agrees roughly with the Monte Carlo findings on the min-
imum number of simulations required for obtaining reliable
results for the bootstrap standard error (Efron and Tibshirani,
1993).

5 Application to artificial time series

The application of heavy tail estimation to artificial data
(Fig. 2) offers a test of the new analysis method because
the properties of the data-generating process (τ,α) are pre-
scribed and can be compared with the estimates (̂τ , α̂). Em-
ploying a data size (n= 5000) not untypical for ambitious
non-linear geophysical analyses and using the new order se-
lector yields a clearly expressed optimal order of kopt = 1071
(Fig. 2c). That means about 20 % of the data are utilized for
heavy tail index estimation.

It is remarkable that the sequence α̂k does not at all display
a plateau at around kopt (Fig. 2b). Rather, the sequence shows
a trend that decreases with k.

The resulting estimates with RMSE error bars from nsim =

100 simulations (Sect. 4) agree well with the prescribed val-
ues: for the persistence time, τ = 1.50 and τ̂ ±RMSEτ̂ =
1.46± 0.04; for the heavy tail parameter, α = 1.75 and α̂±
RMSEα̂ = 1.76± 0.06.

The good agreement between data and fit is also reflected
by the good agreement between data histograms and fitted
densities (Fig. 2d–f).

One caveat to consider is the fact that the prescribed den-
sity of the process that generated the data (Fig. 2a) is a stable
distribution, which is also employed by optimal order selec-
tion (Algorithm 1). This may have, at least partly, produced
the good fit on artificial data. On the other hand, (1) the full
distribution does not need to follow the distribution, just the
extremal part, and (2) stable distributions form a fairly wide
class of distributions (Nolan, 2003). Still, we plan to study
the relevance of this point by means of an analysis under var-
ied Monte Carlo designs.

6 Application to observed, hydrological time series

The application of heavy tail estimation to observed data
(Fig. 3) serves to illustrate the practical work. The runoff
time series of the River Elbe at station Dresden (Fig. 3a)
belongs to the longest observed hydrological records avail-
able. The data quality is assessed as excellent owing to the
relatively constant observation situation at this station and
the frequently updated runoff–water stage calibration curves
(Mudelsee et al., 2003). We analyse the hydrological sum-
mer separately (Fig. 3) because the conditions for generat-
ing extreme floods (right tail) vary from summer to winter
(Mudelsee et al., 2003). The resulting data size is n= 38272.
The clearly expressed optimal order for Hill estimation is
kopt = 3732 (Fig. 3c). This means about 10 % of the data are
utilized for heavy tail index estimation. This decrease in the

Nonlin. Processes Geophys., 24, 737–744, 2017 www.nonlin-processes-geophys.net/24/737/2017/



M. Mudelsee and M. A. Bermejo: Optimal heavy tail estimation – Part 1 741

0 2000 4000
t(i)

-40

-20

0

20

40

x(
i)

900 1100 1300 1500
k

0

1

2

3

k 
± 

R
M

S
E

(k
)

900 1100 1300 1500
k

0.01

0.1

1

10

R
M

S
E

(k
)

1 10
2 3 4 5 6789 2 3

x

1

10

100

Fr
eq

ue
nc

y

1 2 3 4 5 6
x

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Fitted, scaled f(x)

10 20 30
x

1

10

100

Fr
eq

ue
nc

y

Fitted, scaled f(x)
Histogram midpoints

x'(kopt)  = 1.04

Fitted, scaled f(x)
Histogram midpoints

(a) (b) (c)

(f)(e)(d)

Figure 2. Application of heavy tail estimation with optimal order selection to artificial data: (a) time series (dark line), drawn from an
AR(1) process with even spacing unity and stable distributed innovations (n= 5000, τ = 1.5, α = 1.75); (b) sequence α̂k (solid dark
line)±RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d)–(f) frequency plots showing densities and his-
tograms at various axis scalings. The optimal order is kopt = 1071. The fitted heavy tail density function, f (x), has been scaled such that for
x > x′(kopt), the tail probability, F(x) (Eq. 1), times n equals the number of extreme events (right tail). (Note that

∫
f (x)= F(x).)

ratio kopt/n with n, which is found when the observed se-
ries is compared with the artificial series of size n= 5000
(Sect. 5), is compatible with theoretical recommendations
(Hall, 1982).

Due to excessive computing costs associated with a brute
force search for n= 38272, the optimal order is found via a
quasi-brute force, two-step search method. In the first step,
we calculate the measure RMSE(k) (Algorithm 1) at k-
increments of Lk = 50. From the resulting 765 measure val-
ues, we select Pmink = 5 % with minimal measure, for which
we perform in the second step a fine search with increment 1.
The quasi-brute force search, Monte Carlo experiments and
further hints on the selection of Lk and Pmink are described
in the manual (Supplement).

The resulting estimates with RMSE bars from nsim = 100
simulations are τ̂ = 0.060±0.002 a and α̂ = 1.48±0.13. Al-
though the observed time series clearly has more points
(n= 38272) than the artificial one (n= 5000), the error bar
for the heavy tail index estimate is larger (RMSEα̂ = 0.13)
than for the artificial one (RMSEα̂ = 0.06). The reason is
that the estimated “equivalent autocorrelation coefficient”
(Mudelsee, 2014), given by ̂̄a = exp(−d̄/τ̂ ), is larger for the
observed time series (̂ā = 0.91) than for the artificial one
(̂ā = 0.51). Stronger persistence means fewer independent
data points and a larger estimation uncertainty. An additional
Monte Carlo experiment revealed that for absent persistence
(τ = 0), the observed, hydrological values yield a clearly
smaller error bar (RMSEα̂ = 0.03).

For the hydrological interpretation of the statistical results,
not only the error bars (RMSEτ̂ and RMSEα̂) have to be con-
sidered, but also model mis-specification.

In the case of persistence estimation of runoff series, an al-
ternative to the AR(1) model may be a long-memory model
(Mudelsee, 2007). We think that the large estimated auto-
correlation (̂ā = 0.91) does already capture a large amount
of the serial dependence structure (Sect. 1) of the hydrolog-
ical series. Therefore, an associated persistence model mis-
specification would likely have consequences (widened error
bars) that are only minor. Still, it is worth studying more sys-
tematically long-memory models with heavy tail distributed
innovations.

In the case of heavy tail index estimation, we think that the
employed stable distribution model class does already cap-
ture the true distribution (Fig. 3d–f) quite well owing to the
wide range of the stable class (Sect. 1). Therefore, an asso-
ciated distribution model mis-specification should not widen
the error bars strongly, and the true estimate should not be far
away from the estimate, α̂ = 1.48.

However, the possibility of model mis-specification pre-
vents us at this stage of the analysis from concluding un-
ambiguously that with α < 2, the runoff-generating process
has infinite variance (Nolan, 2003). This would have serious
consequences for practical work since many types of statis-
tical estimation problems (e.g. trend, spectrum) would be af-
fected. We mention the study of the runoff series from the
River Salt (Anderson and Meerschaert, 1998), which found
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Figure 3. Application of heavy tail estimation with optimal order selection to observed data: (a) time series (dark line) and average daily
runoff of the River Elbe at Dresden (Germany) during summer (May to October) from 1 May 1806 to 31 October 2013 (n= 38272); units:
m3 s−1; (b) sequence α̂k (solid dark line)±RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d)–(f) frequency
plots showing densities and histograms at various axis scalings (cf. Fig. 2). The optimal order is kopt = 3732; it has been detected using
a quasi-brute force search (see text). Data courtesy Wasser- und Schifffahrtsverwaltung des Bundes, provided by the Bundesanstalt für
Gewässerkunde (BfG), Koblenz, Germany.

α̂ ≈ 3 (i.e. finite variance), in contrast to our finding. Fur-
ther stages of the analysis, to be pursued in a future paper,
will therefore include (1) a comparison between summer and
winter for the runoff series from Dresden; (2) a quantifica-
tion of the sensitivity to the removal of an annual cycle; (3) a
comparison among various other stations on the River Elbe
and (4) a comparison with other rivers, for which long, high-
quality runoff records are available. Evidently, an accurate
heavy tail estimation technique with optimal order selection
is helpful for this purpose.

7 Conclusions

The tail probability, P(X > x), is crucially important for
practical risk analysis, for example, the calculation of the ex-
pected losses in the reinsurance business. Instead of a Gaus-
sian exponential behaviour (light tail), many observed vari-
ables from complex networks show a power law (heavy tail).
This law (Eq. 1), which is parameterized by means of the
heavy tail index, α, allows us to extrapolate the probability
into unobserved, extreme data ranges.

The accurate estimation of α on the basis of observed data
is therefore also crucially important. The “Achilles’ heel” of
tail index estimation is order selection, that is, to set how
many of the largest values to utilize for the estimation. This
paper focuses on a new, optimal order selector (Algorithm 1).
The superiority of the new selector is demonstrated in a
Monte Carlo simulation experiment (Fig. 1).

The new selector is claimed to utilize the data in an op-
timum way for performing an estimation. The resulting er-
ror bars (RMSEα̂), which are calculated from computing-
intensive simulations (Sect. 4), are comparably small. Hence,
the new method allows us to study, more accurately than pre-
viously possible, various extremal behaviours, such as the
spatial dependence of α in geostatistical applications or the
time dependence of α on long time series. The time depen-
dence may shed light on tipping points in complex systems.
In particular, changes in α over time may possibly be used
to predict the approach of a sudden change in a geophysical
variable (e.g. climate).

The data-generating process (AR(1) with stable distributed
innovations) achieves “distributional robustness” because the
full distribution does not need to follow Eq. (1), just the
extremal part. It also achieves “persistence robustness” be-
cause Eq. (3) ensures that for many time series (also un-
evenly spaced), the persistence dynamics is captured at least
to first order. As a result, the presented method is accurate
and widely applicable, and it delivers robust results.

However, at this stage of method development, it is still
useful to perform more Monte Carlo simulation studies on
heavy tail index estimation. These simulations should in-
clude varied designs, in particular, prescribed shapes other
than a stable distribution. Furthermore, it is interesting to
study estimators other than Hill (on which this paper fo-
cuses). The computer program associated with optimal index
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estimation (ht) has also implemented the estimation routine
following Pickands III (1975).

The application to an observed, hydrological time series
(Fig. 3) delivered the intriguing result of infinite variance
(but finite mean) (̂α = 1.48) of the data-generating process.
Infinite variance would have serious consequences for many
types of statistical estimation to be carried out on hydrolog-
ical data. We recommend analysing more, independent hy-
drological data to corroborate or refute this finding.

The wider impact of optimal heavy tail estimation may be
not only on the application to the area of instrumental envi-
ronmental measurements, but also to reconstructed variables
from the areas of paleoclimatology (Cronin, 2010), paleo-
hydrology (Gasse, 2009) and dendrochronology (D’Arrigo
et al., 2011; Gholami et al., 2015). Furthermore, since ex-
treme events in hydrology and related fields may also show
the duration aspect (e.g. droughts, heatwaves), the estimation
should not be restricted to measured or reconstructed vari-
ables. Rather, heavy tail index estimation should be a useful
tool also for the analysis of index variables (Kürbis et al.,
2009).

Code availability. The code (Fortran 90 source, Windows exe-
cutable and auxiliary files) and a manual are available at http:
//www.climate-risk-analysis.com/software/ht. The manual is also
available as a Supplement to the paper.

The Supplement related to this article is available online
at https://doi.org/10.5194/npg-24-737-2017-supplement.
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