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Getting Started
Notation

We use the symbol   to denote a stroke of the 
“Enter” key. 

Files Short description

cmd2.lnk Windows console
 (command line)

ht.exe Windows executable
ht-estimate.cfg Configuration file example
  (estimation)
ht-generate.cfg Configuration file example
  (generation)
mzranseed.dat Seed file
  (random numbers)

HT-Manual.pdf Manual

ht.f90 Fortran 90 source
nrtype.f90 Numerical Recipes file
rng.f90 Fortran 90 source 
  (random numbers)

Example.dat Example time series file

Explanation of files

The Windows console is explained under “Ad-
aptation (cmd.exe)” on this page.

The Windows executable and the random 
number seed file are required for using the ex-
ecutable. The configuration files are optional; 
they are used for an automatic work modus.

The *.f90 files are required for compiling a new 
version of ht.exe (e.g., for another operating 
system than Windows, such as Linux).

The example time series file serves for illustra-
tion and explanation of the required input data 
format.

Installation (ht)

(1) Make an ht folder of your choice, let us say 
C:\ht.

(2) Copy the above mentioned files into that 
folder.

Installation (cmd.exe)

This is the command-line or console software. 
It is a part of the Windows system package, 
residing typically at C:\Windows\system32\.

You may also download cmd.exe at the Micro-
soft internet site, www.microsoft.com.

Adaptation (cmd.exe)

This step is optional but recommended to 
achieve a convenient work flow.
(1) Make a shortcut on the desktop:
 > right-click on an open area on the desktop 

> New > Shortcut > (browse to locate
 cmd.exe) > Next > Finish
(2) Adapt the fonts:
 > right-click on the shortcut symbol for
 cmd.exe > Properties > Font > (make your 

choice; for example, on my 1280 x 1024 
screen, I am using the font

 “Lucida Console bold 20 pt”)
(3) Adapt the console window layout:
 > right-click on the shortcut symbol for 

cmd.exe > Properties > Layout >
 Window Size (width x height) 146 x 56 and 

Windows Buffer Size 146 x 9000
(4) Adapt the colours:
 > right-click on the shortcut symbol for 

cmd.exe > Properties > Colours
 > (make your choice; for example, I am 

using a black screen text on a grey back-
ground)

The shortcut to cmd.exe provided by CRA 
(cmd2.lnk), to be copied to your ht folder and 
then double-clicked, includes an adaptation.
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Configuration files

The content of these files, the description of 
the used parameters is contained in these files 
(in the commented part at the bo�om). They 
are preset before program start and cannot be 
changed while the program runs.

Executing the software

It is possible to run ht by double-clicking (e.g., 
in Windows Explorer) on “ht.exe”, but it is 
more convenient to use the command-line win-
dow with the keyboard from the beginning.
(1) Double-click the cmd.exe shortcut on your 

computer desktop: the command-line win-
dow (“ht window”) opens.

(2) Change into the ht directory by typing on 
the keyboard:

 > cd C:\ht (followed by pressing the
 “Enter” key:  )
 In case the ht directory is on another hard-

drive than C:, say F:, you may have to 
switch to the harddrive first:

 > F: 
 > cd F:\ht 

Then, run ht by one of the two following:
(1) > ht.exe 
 This is modus ‘per-hand’.
(2) > ht.exe [configuration file name] 
 The modus is set in the configuration file.

In the modus ‘per-hand’, you see first the ht 
welcome screen (Screenshot 1).

Work modus

ht can analyse time series in three modes.
(1) ‘per-hand’
 Here you type everything into the keyboard 

that is required for the processing (e.g., the 
estimation type).

(2) ‘generate’
 Here everything is read automatically from 

the configuration file; and the analysis 
consists in the automatic generation of new, 
artificial time series data.

(3) ‘estimate’
 Here everything is read automatically from 

the configuration file; and the analysis
 consists in the automatic estimation of the 

heavy tail index.

Screenshot 1 ht welcome screen.
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Many pairs of ‘generate’‒’estimate’ calls within 
a batch file can be used for performing external 
(i.e., outside of ht) Monte Carlo experiments.

The three modes are described in the following 
Sections.

Input data format

Input data is a time series {t(i), x(i)}i=1,…,n.
● no headers
● exactly two entries (t(i), x(i)) per line, that is, 

no missing values
● ASCII format
● no decimal comma
● decimal point possible, but not required
● no thousands comma
● t(i) strictly monotonically increasing
 (more precisely, time can also be strictly 

monotonically decreasing; since for the 
analysis a strictly monotonically increasing 
series is required, in the preprocessing the 
time direction has then to be reversed)

See Example.dat (Screenshot 2) for an illus-
tration.

Data size

ht can process virtually unlimited volumes of 
data. Owing to dynamic memory allocation in 
Fortran 95, the only limit is set in principle by 
the memory (RAM) of your computer.

The maximum allowed data size (n) is given 
by the parameter Nobsmax, which currently 
(Version 1.0) is set equal to a value of 250000 
(see ht.f90).

Screenshot 2 Example.dat (excerpt).
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Section 1: Modus ‘per-hand’

Continuing ( ) from the welcome screen 
(Screenshot 1) brings you to the main menu 
(Screenshot 3).

Displayed are the number of threads on the 
computer available for parallel computing and 
the current data file (not yet defined).

Below you see the choices of the main menu:
(1) Data file
(2) Preprocessing
(3) Tail index estimation
(4) Generation of artificial time series
(5) Exit

Data file

First, a data file has to be selected. This is done 
by typing the number and pressing Enter (1 ). 
You are promted to supply the name (possible: 
path and name). Then ( ) the time series is 
read and the data size is given. Then ( ) the 
main menu re-appears.

Screenshot 3 Main menu.
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Preprocessing

Preprocessing is only possible if a data file has 
been selected.

There exist various preprocessing types.

Reversing the time direction is necessary 
for transforming a series with strictly 
monotonically decreasing time (no screenshot 
shown).

The other preprocessing types (  ) 
are displayed in Screenshot 4. Some 
types require further input (e.g., linear 
transformation).

Note that some preprocessing types reduce the 
data size of the series on which the heavy tail 
index is estimated.

A�er preprocessing, you may go back to the 
previous menu(s).

Screenshot 4 Preprocessing types.
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Tail index estimation

Tail index estimation is only possible if a 
data file has been selected. The index is 
estimated on the preprocessed time series. If 
no preprocessing has been selected, then the 
index is estimated on the original time series.

If from the main menu (Screenshot 3) tail in-
dex estimation is taken, then the first selection 
regards the estimator type (Hill or Pickands) 
(Screenshot 5).

Then next choice is on order selection: brute 
force or quasi-brute force (Screenshot 6).

Brute force means that all possible order values 
(e.g., all positive values minus one in case of 
the Hill estimator) are tried. The best order 
value (in terms of an RMSE measure calculated 
by ht) is then taken for calculating the tail 
index parameter.

The RMSE measure itself is calculated over a 
number N_inner of loops; this parameter can 
only be set within ht.f90; the preselected value 
of N_inner = 1000 has been found in Monte 
Carlo experiments (not shown) to work well.

Quasi-brute force means a reduction of the 
search (at the risk of missing the optimum). 
This reduction is accomplished in two steps 
(Screenshot 7), first a coarse search, and 
then a fine search. See Section 4 and ht.f90 for 
details.

Screenshot 5 Heavy tail estimation: selection of estimator.

Screenshot 6 Heavy tail estimation: choice of order selector.

Screenshot 7 Heavy tail estimation: choice of parameters for quasi-brute force order selector.
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The last selection before the estimation is the 
number of internal (i.e., within ht) Monte Carlo 
simulations to be performed (Screenshot 8) 
for determining the estimation uncertainty.

The uncertainty is determined as empirical 
root mean squared error (RMSE). The data 
generating process for this is an AR(1) process 
on an possibly unevenly spaced time grid 
with innovations from a stable distribution; 
the prescribed parameters (persistence time τ 
for the AR(1) process, heavy tail index α for 
the stable distribution) are overtaken from the 
estimation.

The number of simulations should be at least 
nsim = 10 to obtain uncertainty measures that 
help as a rough guide. Own Monte Carlo ex-
periments (Section 4) indicate that the selection 
of nsim = 100 or higher gives more acceptable 
results. Note that the choice of nsim dictates 
the computing time. It is possible (e.g., in 
preliminary analyses) to circumvent RMSE 
calculation by selecting a negative nsim value.

Note that RMSE calculation can also be select-
ed (after typing in nsim  ) for the persistence 
time estimate.

During the calculations (estimation and Monte 
Carlo simulations), counters inform on the 
screen about the progress.

For computational details on the estimation, 
the implementation of a random number 
generator for parallel computing, the choice to 
calculate via γ = 1/α (for Pickands estimator) 
and other aspects of the uncertainty determi-
nation, see ht.f90.

For details on stable distributions, see N���� 
(1997, 2003), ht.f90 and references cited therein.

For details on AR(1) processes and persistence 
time estimation, see M������� (2014: Chapter 
2).

For details on heavy tail index estimation, see 
R������ (2007), ht.f90 and references cited 
therein.

For details on RMSE and other statistical mea-
sures, see M������� (2014: Chapter 3).

For Monte Carlo simulations and experiments, 
see Section 4.

Screenshot 8 Heavy tail estimation: selection of the number of Monte Carlo simulations.
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A�er the estimation and, possibly, the Monte 
Carlo simulations have been carried out, the 
results appear on the screen (Screenshot 9). 
These contain information about the data (file 
name, original data size and a�er prepro-
cessing), the estimation (estimator and order 
selector), the RMSE determination (nsim) and, 
finally, the estimation result.

A value of the estimate of the persistence 
time (τ) equal to ‒999.0 means that there are 
problems with the estimation of the heavy tail 
index (α); see below.

A value of the RMSE of the persistence time 
estimate equal to ‒999.0 means either that this 
option has not been selected or α-estimation 
problems (see below).

A value of the estimate of the heavy tail index 
(α) equal to ‒999.0 means that no estimation 
is possible since for all tried order values (k), 
the index α(k) is outside of the interval [0; 2] 
(exclusive of the endpoints). ht then states: 
“Suggested options for re-analysis: try other 
preprocessing types or an increased data size.” 
The problem may arise for the Hill estima-
tor, which requires at least minNpositive = 2 
(notation in ht.f90) positive values (after mean 
subtraction). See ht.f90 for further details.

A value of the RMSE of the heavy tail index 

estimate equal to ‒999.0 means either that no 
Monte Carlo simulations have been done or 
α-estimation problems (see above).

In case of Pickands estimator and selected 
choice to calculate via γ = 1/α, the results are 
given for γ and not α; see ht.f90 for details.

A value of the determined optimal order of 
‒999 means α-estimation problems (see above).

These results are not only printed on the 
screen but also written into a file (the default 
name is htresult.dat). Note that an existing file 
is overwritten. The choice of individual result 
file names cannot be done in the modus ‘per-
hand’; it has to be made in the modus ‘esti-
mate’ in the configuration file.

The output file contains additionally:
(1) original time series,
(2) preprocessed time series,
(3) sorted x-values of preprocessed time series,
(4) k,
(5) α(k),
(6) RMSE measure in dependence on k,
(7) α(k) ‒ RMSE measure in dependence on k,
(8) α(k) + RMSE measure in dependence on k.

The RMSE measure, which has been calculated for 
order selection, should not be confused with the 
RMSE value of the α estimate.

Screenshot 9 Results screen.
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Generation of artificial time series

Generation of artificial time series is only 
possible if a data file has been selected. Neither 
preprocessing nor tail index estimation has to 
be done for the generation of artificial data. 
Screenshot 10 shows the steps.

It is possible to overtake the original time grid, 
{t(i)}i=1,…,n, which may show an uneven spacing. 
Alternatively, a grid with an even spacing (of 
unity) is used.

Then the data size (within bounds) is chosen. 
The persistence time (τ > 0) for an AR(1) 
process with uneven spacing is selected next.

As regards the distributional shape, it is 
possible to select among a stable distribution 
(2 > α > 0), a Cauchy distribution (α = 1) and a 
Gaussian (α = 2). Screenshot 10 shows also 
the selection of α for a stable distribution.

For the generation of stable distributions, 
ht employs modified routines from N���� 
(1997), see ht.f90. We overtake also his 
recommendation to select α > 0.4.

These artificial time series data are written 
into a file (the default name is hta.dat). You are 
alerted that an existing file is being overwrit-
ten. 

Exit

You may chose to exit at the main menu 
(possible only if a data file has been selected).

Screenshot 10 Generation of artificial time series.
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Section 2: Modus ‘generate’
The modus ‘generate’ is set in the configura-
tion file (Screenshot 11). It serves automatic 
generation of artificial time series data. This is 
useful in external Monte Carlo experiments. 
The modus is invoked at the command line, for 
example:

ht.exe ht-generate.cfg 

The steps performed are the same as in modus 
‘per-hand’ (Section 1, Generation of artificial 
time series). Instead of user-interactive selec-
tion, the various parameters (n, τ, α and distri-
butional shape) are set in the configuration file 
(Screenshot 11).

The main difference to modus ‘per-hand’ is 
that in modus ‘generate’, you can set the out-
put file name for the generated artificial series. 
Note that an existing file is automatically 
overwritten.

Another difference to modus ‘per-hand’ is that 
in modus ‘generate’, you cannot generate data 
on a predefined time grid. (However, ht.f90 
may be adapted to achieve this.)

Screenshot 11 Configuration file ht-generate.cfg for modus ‘generate’ (excerpt).
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The modus ‘estimate’ is set in the configura-
tion file (Screenshot 12). It serves automatic 
reading of time series data (artificial or not) 
and estimation of the heavy tail index. This is 
useful in external Monte Carlo experiments 
(artificial data) or the automatic processing of a 
large number of existing time series data files. 
The modus is invoked at the command line, for 
example:

ht.exe ht-estimate.cfg 

The steps performed are the same as in modus 
‘per-hand’ (Section 1, Tail index estimation). In-

stead of user-interactive selection, the various 
se�ing and parameters (input data file name, 
estimator, order selector and choice whether 
to calculate the RMSE for the estimate of the 
persistence time) are set in the configuration 
file (Screenshot 12).

In modus ‘estimate’, you can set the output 
file name for the estimation result (Screen-

shot 12, SUBR_EST_OUT_outputfile1) for each 
input data file. This is useful for the automatic 
processing of a large number of existing time 
series data files. Note that an existing output 
file is automatically overwritten.

Section 3: Modus ‘estimate’

Screenshot 12 Configuration file ht-estimate.cfg for modus ‘estimate’ (excerpt).
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In modus ‘estimate’, you can also set the out-
put file name for the reduced estimation result 
(Screenshot 12, SUBR_EST_OUT_outputfile2).

The reduced content consists in one line of 
estimation result:
(1) optimal k,
(2) estimated τ,
(3) RMSE for estimated τ,
(4) estimated α,
(5) RMSE for estimated α,
(6) estimated γ,
(7) RMSE for estimated γ.
(The meaning of values equal to ‒999.0 is as in 
modus ‘per-hand’.) See Screenshot 13 for an 
example.

Note that an existing output file for the re-
duced content is not automatically overwrit-
ten; the result line is appended. This is useful 
in external Monte Carlo experiments (artificial 
data). If no output file for the reduced con-
tent exists, then a new one is started,with one 
header line for the estimation results (1) to (7).

For Monte Carlo experiments, the output file 
of the automatically generated time series 
(Screenshot 11, ht-generate.cfg, parameter 
SUBR_GENERATE_artfile) has to be given the 
same name (a.dat in this case) as of the au-
tomatically read and further processed time 
series data (Screenshot 12, ht-estimate.cfg, 
parameter SUBR_READ_FILE_inputfile).

Screenshot 13 Output file for reduced estimation result (example).
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A Monte Carlo experiment is a computer 
experiment where artificial data are produced 
and analysed. It requires a random number 
generator. The properties of the data-gener-
ating process are prescribed. Monte Carlo 
methods help to study statistical distributions 
and the performance of statistical methods 
(F������ 1996, M������� 2014).

We refer to simulations as an internal Monte 
Carlo method (i.e., inside of ht); these are done 

for RMSE determination (Section 1). On the 
contrary, we refer to experiments as an external 
Monte Carlo method (i.e., outside of ht); these 
serve here to assess the presented statistical 
method of tail index estimation and to help to 
tailor parameter se�ings for this method.

The Monte Carlo experiments use a batch file 
to run ht several times by invoking the config-
uration files (modes ‘generate’ and ‘estimate’). 
See Screenshot 14 for an example.

Section 4: Monte Carlo Experiments

Screenshot 14 Batch file for an external Monte Carlo experiment (example).



14 ht 1.0
User Manual

First Monte Carlo experiment:
Required number of simulations

The first Monte Carlo experiment studies the 
number of simulations required for achieving 
a certain accuracy in case of the Hill estimator 
and the brute force order selector (Figure 1).

The prescribed properties of the data-
generating AR(1) process with stable-
distributed innovations are:
n = 50 or 100,
τ = 0.0,
α = 1.5.

Shown against nsim is the coefficient of 
variation (CV) of the RMSE of the estimated 
α. The RMSE is calculated from nsim internal 
Monte Carlo simulations (Section 1). The CV 
is given by the standard deviation of RMSE, 
which is calculated over a number of external 
runs, divided by the mean calculated over the 
runs. The CV is a well-known, handy measure 

of the relative uncertainty (M������� 2014: 
Chapter 3).

The number of runs (one run consists of 
generating a series and estimating the tail 
index with RMSE) is 10000.

Figure 1 demonstrates that for a number of 
nsim ≈ 100, saturation behaviour of the CV 
sets in. This value seems not to depend on 
α or n; such an independence on n is known 
from “classical experiments” for the RMSE 
of standard deviation estimation of Gaussian 
white noise (M������� 2014: Table 3.2).

To summarize, taking nsim = 100 seems 
sufficient to achieve a decent level of accuracy 
for the RMSE determination. This value 
also agrees roughly with the Monte Carlo 
findings on the minimum number of bootstrap 
simulations required for obtaining reliable 
results for the bootstrap standard error (E���� 
� T��������� 1993).

Figure 1 Monte Carlo experiment: required number of simulations. (α̂ is the estimate of α.)
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Second Monte Carlo experiment:
Estimation accuracy

The second Monte Carlo experiment studies 
the estimation accuracy in dependence on the 
data size in case of the Hill estimator (Figures 
2 and 3).

The prescribed properties of the data-
generating AR(1) process with stable-
distributed innovations are:
n = 100, 200, 500, 1000, 2000 or 5000;
τ = 0.0 or 1.0;
time spacing: equidistant 1.0;
α = 1.2, 1.5 or 1.8.

The heavy tail index estimation is done with:
Hill estimator,
brute force order selector,
nsim = 100.

Shown against n is the RMSE of the estimated 
α, which is calculated over a number of 10 
external runs.

Both Figures 2 and 3 show how strongly the 
estimation accuracy increases (i.e., the RMSE 
decreases) with n.

In case of persistence in the data-generating 
process (here an AR(1) process with τ = 1.0), 
the resulting RMSE values are systematically 
larger than when no persistence is present 
(Figure 2). This is as expected from the 
reduced “effective data size” (M������� 2014: 
Chapter 2).

Figure 2 Monte Carlo experiment: estimation accuracy, dependence on n and τ (fixed: α = 1.5).
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Also the influence of the prescribed α-value on 
the resulting accuracy is clear: smaller α-values 
lead to a larger resulting RMSE (Figure 3).

To summarize, the data size has to be large 
enough (i.e., at least a few thousand) to achieve 
a decent level of accuracy for the heavy tail 
index estimation, especially if the tail index is 
small (i.e, clearly less than 2.0).

Figure 3 Monte Carlo experiment: estimation accuracy, dependence on n and α (fixed: τ = 0.0).
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Third Monte Carlo experiment:
Computing time

We recorded also the computing time 
necessary to carry out the Monte Carlo 
simulations shown in Figures 2 and 3. The 
resulting plot is shown in Figure 4.

The used hardware:
Tarox Workstation 745TQ,
2 CPU Intel Xeon E5-2620 (64 GB RAM),
24 threads.

The used so�ware:
operating system: Linux Fedora 15;
compiler: Intel(R) Visual Fortran Composer XE 
2013;
compiling options: /nologo /O2 /Qipo 
/Qopenmp /Qdiag-disable:8290
/module:”Release\Modules”
/object:”Release\Obj\ht”
/Fd”Release\vc100.pdb” /traceback
/check:bounds /libs:static /threads /c.

Shown against n is the computing time for the 
heavy tail estimation, which is calculated as 
the average over a number of 10 external runs. 
The results indicate a strong increase with n in 
the form of a power-law (Figure 4).

To summarize, on computing systems similar 
to that one used, data sizes in the order of 1000 
and higher lead to sensible computing times. 
This may lead to consider quasi-brute force 
instead of brute force order selectors.

Figure 4 Monte Carlo experiment: computing time, dependence on n (fixed: τ = 0.0, α = 1.5).
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Fourth Monte Carlo experiment:
Quasi-brute force vs. brute force

For larger data sizes and brute force (BF) order 
selection, computing time may be a sensible 
factor (Figure 4). Quasi-brute force (QBF) 
selection may considerably reduce computing 
time. The fourth Monte Carlo experiment 
studies how well QBF results agree with BF 
results (Figures 5 and 6).

The prescribed properties of the data-
generating AR(1) process with stable-
distributed innovations are:
n = 200, 300, 400, 500, 1000, 2000, 5000 or 10000;
τ = 0.0;
α = 1.5.

The heavy tail index estimation is done with:
Hill estimator,
BF or QBF order selector.

The QBF selector does not search through all 
order values. Instead, it works in two steps. At 
the first step, it calculates through the order 
values at an increment of Lk. At the second 

step, the Pmink percent of those order values 
calculated at the first step that have minimal 
RMSE measure, are subjected to a brute force 
search over the following increment of Lk. 

As an example, consider an BF search through 
1, 2, …, 300. Let Lk = 5 and Pmink = 5. Then, the 
first step of QBF calculates through 1, 6, 11, 16, 
…, 296 (60 values). Let the 5% best (in terms 
of RMSE measure) values be: 16, 111, 266,. The 
second step of QBF then studies 16, 17, 18, 19, 
20, 111, 112, 113, 114, 115, 266, 267, 268, 269, 
270. The general formula is: If the computing 
time for BF is ~ n, then the computing time 
for QBF is ~ n (1/Lk+ Pmink/100). These are 
approximations. See also ht.f90.

Shown against n is the percentage of 
agreement between BF and QBF (Lk = 5,
Pmink = 5) for the detected optimal order 
(Figure 5), which is calculated over a number 
of 100 external runs.

To summarize, for the studied design (Figure 
5), n ≥ 1000 yields almost perfect agreement.

Figure 5 Monte Carlo experiment: QBF vs. BF, dependence on n (fixed: τ = 0.0, α = 1.5).
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Another feature explored in the Monte Carlo 
experiment of QBF vs. BF is the dimension of 
Lk (Figure 6).

The prescribed properties of the data-
generating AR(1) process with stable-
distributed innovations are:
n = 5000,
τ = 0.0,
α = 1.5.

The heavy tail index estimation is done with:
Hill estimator,
BF or QBF order selector.

The QBF parameters are:
Lk = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 
130 or 140;
Pmink = 5.

Shown against n is the percentage of 
agreement between BF and QBF for the 
detected optimal order (Figure 6), which is 
calculated over a number of 100 external runs.

To summarize, for the studied design (Figure 
6), Lk ≤ 40 yields almost perfect agreement.

Further dimensions in the space of estimation 
parameters (e.g., Pmink) can be studied with 
Monte Carlo experiments.

The practical conclusions we draw from the 
four Monte Carlo experiments shown so far in 
Section 4 are the following:

(1) A number of simulations of nsim = 100 is 
sufficient to achieve a decent accuracy for the 
RMSE determination.

(2) A data size of n = 5000 is sufficient to 
achieve a decent accuracy for the havy tail 
index estimation (caveat: if α is clearly less 
than 2.0, close to 1.0, then larger data sizes may 
be required).

(3) For n ≥ 5000, the QBF order selector with Lk 

= 5, 10 or 20 and Pmink = 5 may yield accurate 
estimations at clearly reduced computing 
times.

Figure 6 Monte Carlo experiment: QBF vs. BF, dependence on Lk (fixed: n = 5000, τ = 0.0, α = 1.5).
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Two example analyses on artificially generated 
time series serve to illustrate the work with ht. 
Both times, the heavy tail index estimation is 
done with Hill estimator, BF order selector and
nsim = 100.

The first example (Figure 7) prescribes the 
properties of the data-generating AR(1) 
process as:
n = 5000,
τ = 1.5,
α = 1.75.

The order selection yields a clear result: The 
curve of the RMSE measure has a minimum 
at kopt = 1071; note that this does not occur in a 
“plateau region” of the curve α(k).

The Hill estimator analyses only the positive 
extremes (R������ 2007). kopt corresponds to a 
value of 1.04 of the sorted {x(i)}.

Also shown in Figure 7 are frequency plots: 
histograms in comparison with scaled heavy-
tailed densities, f(x); the scaling ensures that 
the number of events for x ≥ 1.04 agree.

Figure 7 Example Analysis: n = 5000, τ = 1.5, α = 1.75, Hill estimator (BF), nsim = 100.
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x = 1.04 for kopt

Optimal Heavy Tail Estimation: Results
=============================

Input data file name:                                                   hta.dat
Data size (original):                                                   5000
Data size (after preprocessing):                                        5000
Tail index (alpha) estimator:                                           Hill
Order selector (RMSE measure):                                          Brute force
Length of search-steps used in Step 1:                            L_k = Not applicable (only for quasi-brute force)
Percentage of best k values used in Step 2:                     Pmink = Not applicable (only for quasi-brute force)
Number of loops (order selection):                                      1000
Number of Monte Carlo simulations for RMSE calculations:                100

Persistence time estimate:                                       tau  = 1.458698
Error:                                                      RMSE(tau) = 0.043132
Tail index estimate:                                           alpha  = 1.757687
Error:                                                    RMSE(alpha) = 0.059838
Optimal order:                                                  k_opt = 1071

Section 5: Example Analyses
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The second example (Figure 8) prescribes 
the properties of the data-generating AR(1) 
process as:
n = 2000,
τ = 0.25,
α = 1.25.

The order selection yields a less clear result 
(compared with the first example): still, the 
curve of the RMSE measure has a minimum at 
kopt = 372; also this minimum does not occur in 
a “plateau region” of the curve α(k).

kopt corresponds to a value of 1.52 of the sorted 
{x(i)}. This larger value at smaller n (compared 
with the first example) is owing to a smaller α.

Both examples (Figures 7 and 8) attest that the 
presented methodology (software ht) does a 
good job at selecting the order and estimating 
the heavy tail index parameter.

Both examples further show a good agreement 
(i.e., taking into account the RMSE error bars) 
between prescribed and estimated values for τ 
and α (Figures 7 and 8).

On one hand, the good performance of 
ht is owing to the absence of model mis-
specification: both order selection and data 
generation impose a stable distribution. On the 
other, stable distributions form a large class. 
More analyses on that can be done using ht.

Figure 8 Example Analysis: n = 2000, τ = 0.25, α = 1.25, Hill estimator (BF), nsim = 100.
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x = 1.52 for kopt

Optimal Heavy Tail Estimation: Results
=============================

Input data file name:                                                   hta.dat
Data size (original):                                                   2000
Data size (after preprocessing):                                        2000
Tail index (alpha) estimator:                                           Hill
Order selector (RMSE measure):                                          Brute force
Length of search-steps used in Step 1:                            L_k = Not applicable (only for quasi-brute force)
Percentage of best k values used in Step 2:                     Pmink = Not applicable (only for quasi-brute force)
Number of loops (order selection):                                      1000
Number of Monte Carlo simulations for RMSE calculations:                100

Persistence time estimate:                                       tau  = 0.252084
Error:                                                      RMSE(tau) = 0.057732
Tail index estimate:                                           alpha  = 1.386193
Error:                                                    RMSE(alpha) = 0.106587
Optimal order:                                                  k_opt = 372
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