Journal cover Journal topic
Nonlinear Processes in Geophysics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.558 IF 1.558
  • IF 5-year value: 1.475 IF 5-year
    1.475
  • CiteScore value: 2.8 CiteScore
    2.8
  • SNIP value: 0.921 SNIP 0.921
  • IPP value: 1.56 IPP 1.56
  • SJR value: 0.571 SJR 0.571
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
  • h5-index value: 22 h5-index 22
Volume 24, issue 4
Nonlin. Processes Geophys., 24, 701–712, 2017
https://doi.org/10.5194/npg-24-701-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nonlin. Processes Geophys., 24, 701–712, 2017
https://doi.org/10.5194/npg-24-701-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 01 Dec 2017

Research article | 01 Dec 2017

The Onsager–Machlup functional for data assimilation

Nozomi Sugiura

Related authors

Estimating vertically averaged energy dissipation rate
Nozomi Sugiura, Shinya Kouketsu, Shuhei Masuda, Satoshi Osafune, and Ichiro Yasuda
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-48,https://doi.org/10.5194/npg-2018-48, 2018
Preprint withdrawn
Short summary
Synchronization of coupled stick-slip oscillators
N. Sugiura, T. Hori, and Y. Kawamura
Nonlin. Processes Geophys., 21, 251–267, https://doi.org/10.5194/npg-21-251-2014,https://doi.org/10.5194/npg-21-251-2014, 2014

Related subject area

Subject: Predictability, Data Assimilation | Topic: Climate, Atmosphere, Ocean, Hydrology, Cryosphere, Biosphere
From research to applications – examples of operational ensemble post-processing in France using machine learning
Maxime Taillardat and Olivier Mestre
Nonlin. Processes Geophys., 27, 329–347, https://doi.org/10.5194/npg-27-329-2020,https://doi.org/10.5194/npg-27-329-2020, 2020
Short summary
Correcting for model changes in statistical postprocessing – an approach based on response theory
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020,https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Brief communication: Residence time of energy in the atmosphere
Carlos Osácar, Manuel Membrado, and Amalio Fernández-Pacheco
Nonlin. Processes Geophys., 27, 235–237, https://doi.org/10.5194/npg-27-235-2020,https://doi.org/10.5194/npg-27-235-2020, 2020
Short summary
Simulating model uncertainty of subgrid-scale processes by sampling model errors at convective scales
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020,https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary
Data-driven versus self-similar parameterizations for stochastic advection by Lie transport and location uncertainty
Valentin Resseguier, Wei Pan, and Baylor Fox-Kemper
Nonlin. Processes Geophys., 27, 209–234, https://doi.org/10.5194/npg-27-209-2020,https://doi.org/10.5194/npg-27-209-2020, 2020
Short summary

Cited articles

Apte, A., Hairer, M., Stuart, A. M., and Voss, J.: Sampling the posterior: An approach to non-Gaussian data assimilation, Phys. D, 230, 50–64, https://doi.org/10.1016/j.physd.2006.06.009, 2007.
Cotter, S. L., Roberts, G. O., Stuart, A., and White, D.: MCMC methods for functions: modifying old algorithms to make them faster, Stat. Sci., 28, 424–446, 2013.
Daum, F.: Exact finite-dimensional nonlinear filters, IEEE T. Automat. Contr., 31, 616–622, 1986.
Doucet, A., Godsill, S., and Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10, 197–208, 2000.
Dutra, D. A., Teixeira, B. O. S., and Aguirre, L. A.: Maximum a posteriori state path estimation: Discretization limits and their interpretation, Automatica, 50, 1360–1368, 2014.
Publications Copernicus
Download
Short summary
The optimisation of simulation paths is sometimes misleading. We can find a path with the highest probability by the method of least squares. However, it is not necessarily the route where the paths are most concentrated. This paper clarifies how we can find the mode of a distribution of paths by optimisation.
The optimisation of simulation paths is sometimes misleading. We can find a path with the...
Citation