Articles | Volume 23, issue 2
https://doi.org/10.5194/npg-23-59-2016
https://doi.org/10.5194/npg-23-59-2016
Research article
 | 
11 Mar 2016
Research article |  | 11 Mar 2016

Hybrid Levenberg–Marquardt and weak-constraint ensemble Kalman smoother method

J. Mandel, E. Bergou, S. Gürol, S. Gratton, and I. Kasanický

Related authors

Spectral diagonal ensemble Kalman filters
I. Kasanický, J. Mandel, and M. Vejmelka
Nonlin. Processes Geophys., 22, 485–497, https://doi.org/10.5194/npg-22-485-2015,https://doi.org/10.5194/npg-22-485-2015, 2015
Short summary
Recent advances and applications of WRF–SFIRE
J. Mandel, S. Amram, J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, B. Regev, and M. Vejmelka
Nat. Hazards Earth Syst. Sci., 14, 2829–2845, https://doi.org/10.5194/nhess-14-2829-2014,https://doi.org/10.5194/nhess-14-2829-2014, 2014
Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment
A. K. Kochanski, M. A. Jenkins, J. Mandel, J. D. Beezley, C. B. Clements, and S. Krueger
Geosci. Model Dev., 6, 1109–1126, https://doi.org/10.5194/gmd-6-1109-2013,https://doi.org/10.5194/gmd-6-1109-2013, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Bell, B.: The Iterated Kalman Smoother as a Gauss-Newton Method, SIAM J. Optim., 4, 626–636, https://doi.org/10.1137/0804035, 1994.
Bergou, E., Gratton, S., and Mandel, J.: On the Convergence of a Non-linear Ensemble Kalman Smoother, arXiv:1411.4608, submitted, 2014.
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399, https://doi.org/10.5194/npg-19-383-2012, 2012.
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535, https://doi.org/10.1002/qj.2236, 2014.
Download
Short summary
A stochastic method, the ensemble Kalman smoother (EnKS), is proposed as a linear solver in four-dimensional variational data assimilation (4DVAR). The method approaches 4DVAR for large ensembles. Regularization provides global convergence, and it is implemented as an additional artificial observation. Since the EnKS is uncoupled from the insides of the 4DVAR, any version of EnKS can be used.