Articles | Volume 23, issue 2
Nonlin. Processes Geophys., 23, 59–73, 2016
Nonlin. Processes Geophys., 23, 59–73, 2016

Research article 11 Mar 2016

Research article | 11 Mar 2016

Hybrid Levenberg–Marquardt and weak-constraint ensemble Kalman smoother method

J. Mandel et al.

Related authors

Spectral diagonal ensemble Kalman filters
I. Kasanický, J. Mandel, and M. Vejmelka
Nonlin. Processes Geophys., 22, 485–497,,, 2015
Short summary
Recent advances and applications of WRF–SFIRE
J. Mandel, S. Amram, J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, B. Regev, and M. Vejmelka
Nat. Hazards Earth Syst. Sci., 14, 2829–2845,,, 2014
Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment
A. K. Kochanski, M. A. Jenkins, J. Mandel, J. D. Beezley, C. B. Clements, and S. Krueger
Geosci. Model Dev., 6, 1109–1126,,, 2013

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Fast hybrid tempered ensemble transform filter formulation for Bayesian elliptical problems via Sinkhorn approximation
Sangeetika Ruchi, Svetlana Dubinkina, and Jana de Wiljes
Nonlin. Processes Geophys., 28, 23–41,,, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22,,, 2021
Short summary
A method for predicting the uncompleted climate transition process
Pengcheng Yan, Guolin Feng, Wei Hou, and Ping Yang
Nonlin. Processes Geophys., 27, 489–500,,, 2020
Short summary
Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst
Reinhold Hess
Nonlin. Processes Geophys., 27, 473–487,,, 2020
Short summary
Training a convolutional neural network to conserve mass in data assimilation
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys. Discuss.,,, 2020
Revised manuscript accepted for NPG
Short summary

Cited articles

Bell, B.: The Iterated Kalman Smoother as a Gauss-Newton Method, SIAM J. Optim., 4, 626–636,, 1994.
Bergou, E., Gratton, S., and Mandel, J.: On the Convergence of a Non-linear Ensemble Kalman Smoother, arXiv:1411.4608, submitted, 2014.
Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes Geophys., 19, 383–399,, 2012.
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818,, 2013.
Bocquet, M. and Sakov, P.: An iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 140, 1521–1535,, 2014.
Short summary
A stochastic method, the ensemble Kalman smoother (EnKS), is proposed as a linear solver in four-dimensional variational data assimilation (4DVAR). The method approaches 4DVAR for large ensembles. Regularization provides global convergence, and it is implemented as an additional artificial observation. Since the EnKS is uncoupled from the insides of the 4DVAR, any version of EnKS can be used.