Articles | Volume 21, issue 5
Nonlin. Processes Geophys., 21, 939–953, 2014
https://doi.org/10.5194/npg-21-939-2014

Special issue: Physics-driven data mining in climate change and weather...

Nonlin. Processes Geophys., 21, 939–953, 2014
https://doi.org/10.5194/npg-21-939-2014

Research article 12 Sep 2014

Research article | 12 Sep 2014

Logit-normal mixed model for Indian monsoon precipitation

L. R. Dietz and S. Chatterjee

Related authors

Probabilistic evaluation of competing climate models
Amy Braverman, Snigdhansu Chatterjee, Megan Heyman, and Noel Cressie
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 93–105, https://doi.org/10.5194/ascmo-3-93-2017,https://doi.org/10.5194/ascmo-3-93-2017, 2017
Short summary
Instability and change detection in exponential families and generalized linear models, with a study of Atlantic tropical storms
Y. Lu and S. Chatterjee
Nonlin. Processes Geophys., 21, 1133–1143, https://doi.org/10.5194/npg-21-1133-2014,https://doi.org/10.5194/npg-21-1133-2014, 2014
Short summary
Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
A. R. Ganguly, E. A. Kodra, A. Agrawal, A. Banerjee, S. Boriah, Sn. Chatterjee, So. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles
Nonlin. Processes Geophys., 21, 777–795, https://doi.org/10.5194/npg-21-777-2014,https://doi.org/10.5194/npg-21-777-2014, 2014

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Applications of matrix factorization methods to climate data
Dylan Harries and Terence J. O'Kane
Nonlin. Processes Geophys., 27, 453–471, https://doi.org/10.5194/npg-27-453-2020,https://doi.org/10.5194/npg-27-453-2020, 2020
Short summary
Beyond univariate calibration: verifying spatial structure in ensembles of forecast fields
Josh Jacobson, William Kleiber, Michael Scheuerer, and Joseph Bellier
Nonlin. Processes Geophys., 27, 411–427, https://doi.org/10.5194/npg-27-411-2020,https://doi.org/10.5194/npg-27-411-2020, 2020
Short summary
Improvements to the use of the Trajectory-Adaptive Multilevel Sampling algorithm for the study of rare events
Pascal Wang, Daniele Castellana, and Henk Dijkstra
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-35,https://doi.org/10.5194/npg-2020-35, 2020
Revised manuscript accepted for NPG
Short summary
Ensemble-based statistical interpolation with Gaussian anamorphosis for the spatial analysis of precipitation
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-20,https://doi.org/10.5194/npg-2020-20, 2020
Revised manuscript accepted for NPG
Short summary
Simulation-based comparison of multivariate ensemble post-processing methods
Sebastian Lerch, Sándor Baran, Annette Möller, Jürgen Groß, Roman Schefzik, Stephan Hemri, and Maximiliane Graeter
Nonlin. Processes Geophys., 27, 349–371, https://doi.org/10.5194/npg-27-349-2020,https://doi.org/10.5194/npg-27-349-2020, 2020
Short summary

Cited articles

Ajayamohan, R., Merryfield, W., and Kharin, V.: Increasing trend of synoptic activity and its relationship with extreme rain events over central India, J. Climate, 23, 1004–1013, 2008.
Attri, S. D. and Tyagi, A.: Climate Profile of India, Tech. rep., Government of India, Ministry of Earth Sciences, India Meteorological Department, New Delhi, India, 2010.
Bates, D.: lme4: Mixed-effects modeling with R (Preprint), Springer, http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf (last access: 1 April 2014), 2010.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J.-S. S.: Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127–135, 2009.
Breslow, N. and Clayton, D.: Approximate Inference in Generalized Linear Mixed Models, J. Am. Stat. Assoc., 88, 9–25, 1993.