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Abstract. Describing the nature and variability of Indian
monsoon precipitation is a topic of much debate in the cur-
rent literature. We suggest the use of ageneralized linear
mixed model(GLMM), specifically, the logit-normal mixed
model, to describe the underlying structure of this complex
climatic event. Four GLMM algorithms are described and
simulations are performed to vet these algorithms before ap-
plying them to the Indian precipitation data. The logit-normal
model was applied to light, moderate, and extreme rainfall.
Findings indicated that physical constructs were preserved
by the models, and random effects were significant in many
cases. We also found GLMM estimation methods were sen-
sitive to tuning parameters and assumptions and therefore,
recommend use of multiple methods in applications. This
work provides a novel use of GLMM and promotes its ad-
dition to the gamut of tools for analysis in studying climate
phenomena.

1 Introduction

Explanation of Indian monsoon precipitation has been a chal-
lenging problem in physics as well as data analysis. In this
paper, we focus on statistical analysis of the summer mon-
soon precipitation data, to provide insight symbiotic with
deterministic physics modeling. Previous statistical analy-
sis studies regarding precipitation in Indian monsoons have
explored two main areas – identifying methodology of data
analysis and covariate selection.

The establishment of appropriate statistical methodology
for explanation and prediction of precipitation, while si-
multaneously capturing underlying variability, is paramount.
These methods are used in identification of trends for predic-
tion, however, trends tend to be inconsistent across studies

and may relate to linked variability on different temporal and
spatial scales as noted byTurner and Annamalai(2012).

For instance,Goswami et al.(2006) used daily central In-
dian rainfall and found rising trends in frequency and magni-
tude of extreme rain events along with decreasing light and
moderate rainfall. While validating their 2006 study,Ghosh
et al. (2012) indicated increasing spatial variability in ob-
served Indian rainfall extremes. They also found that mod-
erate rainfall increased in central India despite a decreasing
trend in occurrence of moderate rainfall. For high and ex-
tremely high rainfall, they noted a few locations experienced
a significant upward or downward trend, however, most grid
boxes showed a lack of trend.

A similar study conducted byGhosh et al.(2009) used a
finer spatial scale and indicated a mixture of increases and
decreases of extreme rainfall events dependent on location.
An increasing trend in exceedances of 99th (extreme) per-
centile daily rainfall was discovered byKrishnamurty et al.
(2009). On the other hand, they stated many parts of India ex-
hibited a decreasing trend for exceedances of the 90th (mod-
erate to extreme) percentile. Increases in the frequency of
both light and moderate to extreme rainfall events were ob-
served inSingh et al.(2014), along with decreasing proba-
bility of regional rainfall events and higher variability in the
intensity of these events.

These studies utilized parametric – regression, extreme
value theory, time series methods – and nonparametric statis-
tical techniques, yet their lack of unanimity suggests impor-
tant properties of the Indian monsoon remain partially mis-
understood.

In view of the above, we propose adding thegeneralized
linear mixed model(GLMM) as a potential framework for
analysis of Indian monsoon precipitation data. A GLMM is
a broader framework compared to the standard (linear, log-
linear, logistic, or other) regression in that there arerandom
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effectsinvolved. This implies part of the signal is random,
and changes from one set of circumstances to another. In the
current context, a GLMM may be suitable for capturing lo-
cal, instantaneous variability. Such local variability may arise
from cloud and other physical micro-properties. When there
is no such local variability, an appropriate variance compo-
nent in the GLMM would be zero, thus, recovering the true
underlying “fixed-effects” regression model.

The second principal focus of literature has been identi-
fying relevant covariates for study of Indian monsoon pre-
cipitation. Certain oscillations are commonly useful predic-
tors for precipitation. For instance, the synoptic activity in-
dex (SAI) developed inAjayamohan et al.(2008) corre-
lated strongly with frequency of extreme rainfall. The In-
dian Ocean dipole (IOD) studied inRajeevan et al.(2008)
was shown to modulate inter-annual, inter-decadal and long-
term trends of extreme rainfall events. Most commonly, the
El Niño-Southern Oscillation (ENSO) (Kumar et al., 1999;
Li and Yanai, 1996; Prell and Kutzback, 1992; Turner and
Annamalai, 2012) is cited as a driver of the monsoon.

Several other climatic predictors of monsoons have been
proposed in the literature including Himalayan/Eurasian
snow extent (Kumar et al., 1999), Pacific trade winds (Li
and Yanai, 1996), atmospheric CO2 concentration (Prell and
Kutzback, 1992), and tropospheric temperature difference
(Xavier et al., 2007). Unfortunately, none have been conclu-
sively attributed for the monsoon rainfall which suggests an
intricate relationship between some or all of these factors.

Because explicit attribution to covariates may not be possi-
ble, GLMM is a logical model for Indian monsoon precipita-
tion. It allows underlying randomness to drive observed data
in a particular hierarchy while still accounting for hypothe-
sized drivers of rainfall.

This paper provides an introduction on extending GLMMs
to climate applications. Three paradigms of estimation – ap-
proximate likelihood, method of moments, and Bayesian –
were tested using four separate algorithmic implementations.
The methods of estimating GLMMs were penalized quasi-
likelihood, penalized iteratively reweighted least squares,
method of simulated moments, and data cloning. The theory
and limitations of these estimates are described in detail, then
utilized in simulations to test the validity of the methodology.

Simulation findings showed that penalized quasi-
likelihood was not accurate for the given application, thus,
the three remaining methods were used to fit logit-normal
models with random intercepts by weather station for Indian
summer rainfall data in light, moderate, and extreme rainfall
classifications. Maximum temperature and elevation were
consistently significant in the models aligning with the
physics of precipitation.1TT – tropospheric temperature
difference – was also significant for many of the models.
The most meaningful finding was a random effect by
weather station was non-negligible in many of the models.
This provides further credibility to the methodology in

applications to climate. Overall, we feel GLMMs could be a
significant addition to data analytics in climate applications.

The rest of the paper is organized as follows. Section 2
gives a short background on GLMMs and in particular, elu-
cidates the logit-normal model. The theory of the chosen esti-
mation methods for GLMMs are discussed in Sect. 3. Section
4 furnishes the results of several simulations using these ex-
isting methods. Section 5 applies these methods to monsoon
precipitation data from India. Finally, Section 6 presents con-
clusions and future work in this area.

2 Overview of generalized linear mixed models

2.1 Exponential families

Before discussing GLMMs, we provide preliminaries on the
key component use of an exponential family for the observed
data. An exponential family probability mass/density func-
tion (pmf/pdf) has several unique properties conducive to
modeling. For further discussion of these properties, refer to
Ch. 2 ofKeener(2010). For simplicity, consider a univariate
random variableY distributed as an exponential family. The
canonical form of the pmf/pdf then can be written as follows:

f (y|η) = exp

{
y · η − c(η)

a(φ)
− r(y, φ)

}
. (1)

Notea(·) is a function of a dispersion parameterφ, r(·, ·) is
a function of data and the dispersion parameter, andc(·) is a
function of parameters and is known as the cumulant func-
tion. The statisticy is complete and sufficient; it is known as
the canonical statistic with corresponding canonical parame-
terη. An exponential family can be written in a more general
fashion compared to Eq. (1), but will not be discussed here
for simplicity.

2.2 Model description

A GLMM is a probability model with a hierarchical struc-
ture. Given the latent unobservable second layer, known as
random effects, the top layer has a pdf/pmf following an ex-
ponential family distribution. Assume the observed data are
independent conditional on the random effects, and that we
havei = 1, . . . , N observations. Define theith response as
Yi .

Then, we can write a GLMM as

Level 1:

Yi |u
ind.
∼ f (yi |u) = exp

{
yi · ηi − b (ηi)

a(φ)
− r (yi,φ)

}
, (2)

ηi = xT
i β + zT

i u, (3)

Level 2:

U ∼NM(0,6). (4)
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Thep-components of the vectorβ are calledfixed effects.
The random effects covariance6 is a function of theq-
dimensional (σ1, . . . ,σq ) known asvariance components.

Fixed covariates are represented by thep × 1 vectorxi .
Random covariate vectors for theith data point andrth vari-
ance component can be denoted by amr × 1 vectorzir . We
combine the vectors for each variance component to form
the random covariate vectorzi = (zT

i1, . . . , zT
iq)T of length

M =
∑q

r=1 mr . The random effects vector,U , follows anM-
dimensional normal distribution with mean vector0 and co-
variance matrix6.

In Eq. (2), b(·) is a function of only the canonical parame-
ter ηi . The “linear” part of GLMM comes from the fact that
ηi can be represented as a linear function of the fixed and
random parameters.r(·, ·) is a function of the data andφ. As
before,a(·) is a dispersion function.

To illustrate this form, we consider a commonly used ver-
sion of this model, the logit-normal GLMM. The random-
intercept form of this model is

Level 1:Yi |u
ind.
∼ Bernoulli(θi) , (5)

logit(θi) = ηi = xT
i β + ui, (6)

Level 2:Ui
ind.
∼ N

(
0,σ 2

)
. (7)

Notice that in this model,zi is a vector with a 1 in theith
position and 0’s in all other positions.

Returning to the generic form of the GLMM, the assump-
tion of conditional independence among observations im-
plies the density ofY |u is

f (y|u,β) =

N∏
i=1

f (yi |u,β) , (8)

and that the joint density of (Y, U) is

f (y,u|β,6) = f (y|u,β)f (u|6). (9)

However, since random effects are unobserved, in order
to utilize the observed data likelihood, one must find the
marginal distribution with respect to the observed dataY
only. The log-likelihood is then

`(β,6|Y ) = log
∫

f (y,u|β,6)du. (10)

This integral is rarely analytically tractable. Thus, maxi-
mum likelihood estimation (which is usually preferable when
possible) is very difficult. Many methods for inference have
been proposed. Variants of the most popular methods are ex-
amined in Sect. 3.

3 Methods for estimating in GLMM

3.1 Likelihood approximation methods

Both methods discussed in the following sections make
use of a technique known as Laplace approximation to

approximate an integral by a normal distribution (Tierney
and Kadane, 1986). Then Eq. (10) can be written as follows:

log
∫

f (y|u,β)f (u|6)du = (11)

log
∫

exp{logf (y|u,β) + logf (u|6)}du. (12)

Let

h(u) = logf (y|u,β) + logf (u|6). (13)

Then, we can express the log likelihood as follows:

`(β,6;y) = log
∫

eh(u)du. (14)

This expression can now be approximated. To use the ap-
proximation, one first needs the maximizer of the integrand.
Let u0 be the maximizer ofeh(u). Then a Taylor expansion
aroundu0 yields the approximation to the log-likelihood,

`(β,6;y) ≈ h(u0) +
q

2
log2π −

1

2
log

∣∣∣∣− ∂2h(u)

∂u,∂uT

∣∣∣∣ . (15)

3.1.1 Penalized quasi-likelihood

Penalized quasi-likelihood (PQL) was proposed byBreslow
and Clayton(1993) to approximate the high-dimensional in-
tegral using Laplace approximation as a method for obtaining
u0 and∂2h(u)/∂u∂uT . Filling in the details of Eq. (13),

h(u) = logf (y|u,β)−
1

2
uT 6u+

q

2
log2π−

1

2
log|6|. (16)

This equation is differentiated with respect tou and β

respectively. Further approximations are made within the
derivatives because6 is also unknown. The approximate
derivatives are used to form estimating equations for the
mean parameters. For more detailed discussion of these ap-
proximations, please refer toMcCulloch and Searle(2010).
The same estimating equations arise from jointly maximizing

logf (y|u,β) −
1

2
uT 6u, (17)

with respect tou andβ.
These equations are solved by using Fisher scoring as an

iterated reweighted least squares (IRLS) problem. The quasi-
likelihood, logf (y|u, β), is optimized taking into account
the penalty,12 uT 6u. This penalty term has a shrinkage ef-
fect, i.e. forces values ofu to be closer to zero.

Variance components in6 are subsequently estimated us-
ing a restricted maximum likelihood approach. Further de-
tails on the estimation algorithm are found in Sect. 2 of
Breslow and Clayton(1993).

The function in R which computes PQL estimates is
glmmPQL{MASS}. PQL is reasonably accurate when data
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are approximately normal and can be very fast. However,Lin
and Breslow(1996) and others have criticized this method
for its bias in highly non-normal data. It is especially bad
in binomial data with a small sample size or true probabili-
ties near zero or one. Reliance on the quadratic expansion of
the log-likelihood is appropriate with normal random effects,
yet it is very difficult to assess normality of these unobserved
effects.

3.1.2 Penalized iteratively reweighted least squares

Another approach to likelihood approximation is presented
by Bates(2010). The main difference from PQL is that it
attempts to approximate the true likelihood rather than the
quasi-likelihood.

To understand the approach, first, letU ∼NM(0, 6). Con-
sider the decomposition of the random effects covariance ma-
trix 6 = 00T . Then,U = 0V whereV ∼NM(0, Im). This
implies that the canonical parameter in Eq. (3) can be written
as

ηi = xT
i β + zT

i 0v. (18)

Substituting inv to Eq. (9), we note thatf (y, v) is pro-
portional tof (v|y). Thus,v0 is found to maximizef (v|y).

The penalized iteratively reweighted least squares (PIRLS)
algorithm is as follows.

1. Given starting values forβ, 6, andv0, evaluateη, µY |v,
and varY |v. Let W = diag var−1

Y |v.

2. Use a Gauss–Newton algorithm to solve

µV |y = argmin
v

(
||W1/2(y − µY |v

)
||

2
+ ||v||

2
)
. (19)

3. Update the weights,W , and check for convergence. If
not converged, go to step 2.

Once the conditional modẽv is determined, a Laplace ap-
proximation to the deviance (−2× log-likelihood) is eval-
uated atṽ. This evaluation may alternatively be done by
the Gauss–Hermite quadrature which is discussed further in
Bolker et al.(2009). The function in R used to compute esti-
mates isglmer{lme4} . This method can experience sim-
ilar problems to PQL in cases where the random effects are
non-normal. The Gauss–Hermite quadrature can allay some
of these issues, but is only computationally feasible for small
numbers of random effects.

3.2 Method of simulated moments

Jiang(1998) describes methodology known as themethod of
simulated moments(MSIM). The method first derives a set of
sufficient statistics. Estimating equations are then obtained
by equating sample moments of sufficient statistics to their
expectations.

Referring to the model elucidated in Eqs. (5)–(7), let
the dispersion function bea(φ) =

wi

φ
wherewi is a weight

depending on the exponential family of the response. Let
θ = (β, σ1, . . . , σq). Restrict all elements of thezi to be ei-
ther 0 or 1. Represent

zT
i u =

(
zT
i1u1, . . . ,z

T
iquq

)
(20)

=

(
σ1z

T
i1v1, . . . ,σqzT

iqvq

)
, (21)

whereV r ∼Nmr (0, Imr ).
Then,

f (yi |v) = C (yi,θ ,φ)∗

exp


(

N∑
i=1

wixiyi

)T
β

φ
+

q∑
r=1

σr

φ

N∑
i=1

wiyiz
T
irvr

 ,

whereC(·, ·, ·) represents the other portion of the function.
This yields canonical parameters (β/φ, σ1/φ, . . . , σq/φ)

with corresponding sufficient statistics( N∑
i=1

wixiyi

)T

,

N∑
i=1

wiyizi1, . . . ,

N∑
i=1

wiyiziq

 .

Estimating equations are derived as

N∑
i=1

wixiyi
set
=

N∑
i=1

wixiEθ (yi) (22)

mr∑
l=1

(
N∑

i=1

wizirlyi

)2
set
=

mr∑
l=1

Eθ

(
N∑

i=1

wizirlyi

)2

. (23)

Note that the expectations on the right hand side are func-
tions of the parameters while the formulae on the left hand
sides are functions of data only. Since the expectations are
not available, they must be estimated by Monte Carlo sim-
ulation. The system of equations can then be solved for the
parameters using the Newton–Raphson algorithm.

We implemented this method in a newly created R pro-
gram. As shown inJiang (1998), this method is consis-
tent and is potentially computationally less intensive than a
Markov Chain Monte Carlo (MCMC) method.

3.3 Data cloning

GLMM estimates can be produced in a traditional Bayesian
framework; one must choose priors for the parameters of in-
terest and calculate the posterior distribution by multiplying
the prior densities by the likelihood,L(β, 6|Y ), correspond-
ing Eq. (10). One may then use MCMC to generate a de-
pendent sample from the posterior distribution from which
estimates can be derived based on strong laws.

Lele et al.(2010) derived a method calleddata cloning
to be used in conjunction with MCMC. The algorithm can
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Table 1.MSIM simulation results:µ = 2, σ2
= 1.

# of Obs. per subject

Par. Sub. 2 10 50 200

µ

10 17.41 (4.38) 2.11 (0.07) 2.05 (0.03) 2.00 (0.01)
50 2.08 (0.05) 1.98 (0.02) 2.02 (0.01) 2.00 (0.00)
200 2.01 (0.03) 1.98 (0.02) 1.99 (0.01) 1.99 (0.00)
1000 2.00 (0.04) 1.99 (0.01) 2.01 (0.01) 2.00 (0.00)

σ2

10 741.99 (302.51) 1.71 (0.33) 1.16 (0.09) 0.97 (0.04)
50 1.02 (0.10) 0.98 (0.05) 0.98 (0.02) 0.99 (0.01)
200 0.87 (0.05) 0.97 (0.03) 0.98 (0.02) 0.99 (0.01)
1000 0.92 (0.06) 0.99 (0.02) 1.00 (0.02) 1.00 (0.01)

Loss

10 2885.74 (1016.73) 4.32 (0.71) 1.14 (0.33) 0.09 (0.01)
50 3.29 (0.58) 0.19 (0.02) 0.04 (0.01) 0.01 (0.00)
200 0.33 (0.04) 0.07 (0.01) 0.02 (0.00) 0.00 (0.00)
1000 0.50 (0.16) 0.05 (0.00) 0.02 (0.00) 0.00 (0.00)

be summarized in the following three steps. First, create a
k-cloned data setyk = (y, y, . . . , y) where the observed
data vector is repeatedk times. Choose a prior distribu-
tion π(β, 6). Then, the posterior distribution,πk(β, 6|Y ),
which corresponds to thek-cloned data is

πk(β,6|Y ) =
[L(β,6|Y )]kπ(β,6)∫

(β,6)

[L(β,6|Y )]kπ(β,6)d(β,6)
. (24)

Under regularity conditions ask → ∞,

πk(β,6|Y ) →N ((̂β,6),
1

k
S−1(̂β,6)), (25)

where(̂β, 6) is the maximum likelihood estimate (MLE) of
(β, 6) andS is the Fisher information matrix of the original
data. Thus, largek means the posterior distribution is nearly
degenerate at the MLE.

To generate a dependent sample from the posterior dis-
tribution πk(β, 6|Y ), one may use an appropriate MCMC
algorithm, such as a Gibbs sampler or Metropolis–Hastings
algorithm.

Finally, one can calculate the sample means and variances
of the components of(β, 6). Estimates of MLEs for(β, 6)

correspond to these sample means and approximate vari-
ances of estimated MLEs correspond tok times the posterior
variance of the original data as seen in Eq. (25).

This method was implemented usingdclone{dclone}
discussed inSolymos (2010) which relies on the well-
reputed BUGS language for estimation of hierarchical mod-
els. The method is computationally intensive, and it may
prove difficult to assess convergence as with any MCMC
implementation.

Table 2.dclone simulation results:µ = 2, σ2
= 1.

# of Obs. per subject

Par. Sub. 2 10 50 200

µ

10 13.18 (2.65) 2.12 (0.05) 2.03 (0.03) 2.02 (0.04)
50 2.11 (0.07) 1.99 (0.02) 1.99 (0.02) 1.99 (0.01)
200 2.05 (0.03) 2.02 (0.01) 1.99 (0.01) 2.01 (0.01)
1000 2.01 (0.01) 2.00 (0.00) 1.99 (0.00) 2.00 (0.00)

σ2

10 7.79 (1.79) 1.18 (0.11) 0.95 (0.06) 0.98 (0.05)
50 1.67 (0.33) 1.00 (0.05) 0.99 (0.03) 1.00 (0.02)
200 1.16 (0.08) 0.99 (0.02) 0.98 (0.01) 1.00 (0.01)
1000 0.98 (0.04) 0.99 (0.01) 1.00 (0.01) 0.99 (0.00)

Loss

10 131.65 (86.2) 1.26 (0.14) 0.32 (0.04) 0.31 (0.05)
50 1.58 (0.44) 0.19 (0.02) 0.06 (0.01) 0.04 (0.00)
200 0.40 (0.06) 0.04 (0.00) 0.02 (0.00) 0.01 (0.00)
1000 0.09 (0.01) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

4 Logit-normal simulations

4.1 Simulation setup

For subjecti wherei ∈ (1, . . . ,m) and observationj where
j ∈ (1, . . . ,n) and(µ, σ 2) = (2, 1), we simulated 100 differ-
ent data sets from the model

Level 1:Yij |u
ind.
∼ Bernoulli

(
θij

)
(26)

logit
(
θij

)
= ηi = µ + ui (27)

Level 2:Ui
ind.
∼ N

(
0,σ 2

)
. (28)

The number of subjects (m) was set at (10, 50, 200, 1000)
and the observations per subject (n) was set at (2, 10, 50,
200). All methods were tested at each of these 16 settings.
Means and standard errors over the 100 estimates at each set-
ting were then calculated.

To quantitatively describe the estimation discrepancy be-
tweenµ andµ̂m,n, we used squared error loss,

Q
(
µ̂m,n

)
=
(
µ̂m,n − µ

)2
. (29)

Because squared error loss is criticized for a bounded param-
eter space, we used Stein’s loss,

S
(
σ̂ 2

m,n

)
=

σ̂ 2
m,n

σ 2
− 1− log

σ̂ 2
m,n

σ 2
, (30)

to measure how wellσ 2 was estimated bŷσ 2
m,n. A combined

loss was then calculated as

G
(
µ̂m,n, σ̂

2
m,n

)
= Q

(
µ̂m,n

)
+ S

(
σ̂ 2

m,n

)
. (31)

Ideally, asm, n → ∞, G(µ̂m,n, σ̂ 2
m,n) → 0.

4.2 Simulation estimation analysis

The estimation results are displayed in Tables1–4. All meth-
ods failed to reasonably estimate bothµ andσ 2 in the small-
est scenario with 10 subjects and two observations each.
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Table 3.glmer simulation results:µ = 2, σ2
= 1.

# of Obs. per subjects

Par. Sub. 2 10 50 200

µ

10 6.02 (0.70) 2.77 (0.18) 2.33 (0.09) 2.10 (0.02)
50 2.18(0.09) 1.99(0.02) 2.02(0.01) 2.00 (0.00)
200 2.03(0.04) 1.99(0.02) 1.99(0.01) 1.99 (0.00)
1000 2.02(0.04) 1.99(0.01) 2.01(0.01) 2.00 (0.00)

σ2

10 198.73 (81.39) 7.48 (1.36) 3.07 (0.76) 1.19 (0.04)
50 1.66 (0.54) 0.95 (0.05) 0.94 (0.02) 0.94 (0.01)
200 0.93 (0.06) 0.97 (0.03) 0.97 (0.01) 0.98 (0.01)
1000 0.97 (0.05) 1.00 (0.02) 1.00 (0.01) 0.99 (0.00)

Loss

10 270.68 (84.19) 13.35 (1.91) 3.79 (1.12) 0.11 (0.02)
50 4.96 (1.15) 0.19 (0.02) 0.04 (0.00) 0.01 (0.00)
200 0.32 (0.04) 0.06 (0.01) 0.02 (0.00) 0.00 (0.00)
1000 0.47 (0.20) 0.04 (0.00) 0.01 (0.00) 0.00 (0.00)

This was expected because there are not enough replications
within the subject to get a meaningful estimate of a variance
by subject.

All other settings for MSIM,dclone , andglmer esti-
matedµ within 2 standard errors. These methods also pro-
vided reasonable estimates ofσ 2 for settings other than those
with 10 subjects. The combination of the loss for the two es-
timates went to 0 quickly for all three methods. In general,
estimation by these three methods were unbiased.

The methodglmmPQLdid not converge to the true values
of (µ, σ 2) as evidenced by combined loss greater than 0 for
all settings. Further, this method displayed an underestimat-
ing bias in both parameters. Also, this function in R could
not produce estimates for some of the 100 data sets in each
setting.

4.3 Simulation speeds

Subsequently, we tested 4 of the 16 simulation settings to
determine computing speed of the estimation methods. The
settings used were combinations of (50, 200) subjects with
(10, 200) observations. Thesystem.time() command
in R was used to record times. Simulations were indepen-
dently run on four computers, and each estimation method
was tested in sequence in one R script on a single core. Com-
puter specifications can be found in the Appendix.

We implemented MSIM in two ways for the speed test. In
the intercept-only model Eqs. (26)–(28), it is possible to use
a simple algorithm for estimation. However, a more general
form of the algorithm is needed for problems including fixed
covariates. This form relies on matrices and does not work
with large data sets at this time. These methods are referred
to MSIM fastandMSIM slow, respectively.

Results were similar for each of the four computers, there-
fore, only one of the sets of results are shown in Table5. The
results indicated thatglmmPQLwas fastest in the 50 subject
cases andglmer was fastest in the 200 subject cases. These
two likelihood methods were the fastest due to the nature of

Table 4.glmmPQLsimulation results:µ = 2, σ2
= 1.

# of Obs. per subjects

Par. Sub. 2 10 50 200

µ

10 3.10 (0.17) 1.92 (0.16) 1.34 (0.14) 0.68 (0.08)
50 1.83 (0.06) 1.61 (0.03) 1.60 (0.02) 1.54 (0.01)
200 1.81 (0.04) 1.71 (0.02) 1.73 (0.01) 1.72 (0.01)
1000 1.81 (0.04) 1.81 (0.02) 1.81 (0.01) 1.79 (0.01)

σ2

10 1.71 (0.13) 1.26 (0.11) 0.81 (0.11) 0.26 (0.06)
50 0.52 (0.06) 0.25 (0.04) 0.15 (0.04) 0.01 (0.01)
200 0.51 (0.04) 0.54 (0.03) 0.67 (0.02) 0.68 (0.01)
1000 0.48 (0.04) 0.72 (0.03) 0.75 (0.01) 0.74 (0.01)

Loss

10 6.04(0.50) 5.95(0.47) 7.80(0.50) 10.21(0.47)
50 4.81(0.44) 5.61(0.38) 6.26(0.31) 7.89(0.12)
200 3.40(0.48) 1.77(0.33) 0.24(0.06) 0.15(0.01)
1000 3.95(0.47) 0.75(0.25) 0.10(0.01) 0.10(0.00)

Table 5.Total system time (in seconds) results for Nokomis.

(# of subjects, obs. per subject)

Method (50, 10) (50, 200) (200, 10) (200, 200)

glmer 0.089 0.048 0.080 0.071
PQL 0.286 0.234 0.384 0.394
MSIM fast 2.576 3.419 2.479 2.483
Dclone 10.028 11.355 38.069 40.004
MSIM slow 94.729 9363.849 1069.468 –

the approximations that they make. The Bayesian method,
dclone , was slower at about 4 to 25 min to produce esti-
mates. The simple algorithm of MSIM fast was faster than
dclone and slightly slower than approximation methods
taking 3 to 6 s per run. The MSIM slow method was much
slower ranging from 1.5 min to nearly 4 h. The case with
200 subjects 200 observations could not be handled by this
method because the size of matrices and vectors exceeded
the storage capacity allowed by R.

4.4 Simulation conclusions

An ideal method would provide high quality estimates in a
short amount of time. The simulation indicated trade-offs be-
tween speed and accuracy in some of the methods.

Theglmer andglmmPQLmethods were the fastest, but
glmmPQLestimates were biased. Accurate estimates were
produced bydclone despite being much slower than the
approximation methods.

In the intercept-only implementation, MSIM provided
fast, accurate estimation. However, it was much slower than
other methods in its matrix version and failed when too many
observations were used. It should be noted that tuning param-
eters within each of the methods, such as convergence crite-
ria for MSIM or number of MCMC samples indclone may
impact computing time significantly.
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Based on the output of these simulations, theglmmPQL
method was not consistent. The other three methods –
glmer , dclone , and MSIM – provided estimates with rea-
sonable accuracy. Therefore, these estimation methods are
used to fit models for Indian monsoon precipitation data.

5 Application in Indian monsoon precipitation

5.1 Data

Multiple data sets have been used to study Indian monsoon
precipitation in the literature of different temporal and spa-
tial granularity. However, the initial goal was to develop and
test the methods on widely and freely available data sets for
the purpose of understanding the usefulness of GLMM in
this context. This led to our selection of the data sources de-
scribed below.

We chose the National Climatic Data Center (NCDC)1

in the National Oceanic and Atmospheric Administration
(NOAA) to gather latitude (◦), longitude (◦), elevation (m),
and daily minimum and maximum temperatures (◦C). These
data were collected from 1 January 1973 to 31 Decem-
ber 2013. Data were queried for all available Indian stations
in the database. This data source was developed for a wide
variety of potential applications, including climate analysis
and monitoring studies that require data at a daily time reso-
lution. Quality assurance checks are routinely applied to the
full data set according toMenne et al.(2012).

We note this data had a large amount of missing observa-
tions, therefore, only stations with at least five observations
were included in analysis. One year in particular, 1975, did
not contain enough data to be included in the analysis. To
elucidate this missingness, on 25 August 2012, there were
33 stations with missing (NA) values, 12 stations with precip-
itation of 0 mm, and 31 stations with greater than 0 mm pre-
cipitation. This implies several stations were not included in
the data for this day and in general, stations included change
over time. Figure1 illuminates the rainfall on this date.

We also included several other covariates of interest. The
first was tropospheric temperature difference (1TT); the air
temperature averaged between the levels 600 and 200 hPa.
The hypothesis that Indian ocean warming leads to reduc-
tion in 1TT which in turn reduces monsoon circulation is
noted inXavier et al.(2007). Thus, the inclusion of this co-
variate in the models was relevant. Data were collected from
the National Centers for Environmental Prediction (NCEP)
Reanalysis site2.

As stated inWang(2006) and other literature, Indian rain-
fall is strongly associated with ENSO, and onset of discharge
in Niño-3.4 region can lead to drought in India. The occur-
rences of precipitation extremes are thought to be fewer in

1http://www.ncdc.noaa.gov/
2http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.

reanalysis.derived.html

Previously Available
Missing
Available
Rain in mm

Figure 1. Observed Indian rainfall (in mm) on 25 August 2012,
shown in contours. Markers indicate NCDC NOAA data status of
individual stations.

drought years. The Niño-3.4 monthly anomaly series was
gathered for inclusion in the models from the NCEP site
sponsored by NOAA3.

The Indian Ocean Dipole (IOD) is an irregular oscillation
occurring in the Indian Ocean. It is commonly measured by
the Indian Dipole Mode Index (DMI) which takes the dif-
ference between sea surface temperature (SST) anomalies in
the western and eastern Indian Ocean. Non-ENSO drought
years are associated with DMI thus, this is a relevant co-
variate for inclusion in modeling. This index was only avail-
able for 1973–2010 models and data were procured from
the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) site4.

We note that analysis of monsoon precipitation using
thresholds was previously done inKrishnamurty et al.
(2009). Rather than use a fixed threshold for the en-
tirety of India, they utilized data derived percentile thresh-
olds which changed depending on spatial location. How-
ever, their research was focused on trend analysis. Since
we were able to include spatial covariates, we only con-
sider fixed thresholds for the entire country found inAttri
and Tyagi (2010). This report defined three categories of
rainfall: light rainfall (0< x < 64.4 mm day−1), moderate
rainfall (64.4≤ x < 124.4 mm day−1), and extreme rainfall
(≥ 124.4 mm day−1).

3http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/detrend.nino34.ascii.txt

4http://www.jamstec.go.jp/e/
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All stations were were marked each day with indicators
of these categories to be used in the modeling. Only obser-
vations considered to be within monsoon season were used.
This conservatively included the time period from 1 May to
31 October (184 days) for each year. We fit models for each
year (excluding 1975) from 1973–2013. To account for spa-
tial variability, we fit a random intercept by weather station
(WS) in the following logit-normal model:

Level 1:YWS,day|u
ind.
∼ Bernoulli

(
θWS, day

)
, (32)

logit
(
θWS,day

)
= xT

WS,dayβ + uWS, (33)

Level 2:UWS
ind.
∼ N

(
0,σ 2

WS

)
. (34)

5.2 Results of GLMMs

To aid interpretation and provide a basis for comparison
among models, we performed tests of significance for both
fixed and random parameter estimates. We also give results
from a goodness-of-fit test for each year’s model.

In order to provide tests of significance for fixed effect co-
efficients, we propose the following procedure:

1. Run a generalized linear model (GLM) with all eligible
fixed covariates.

2. Run a GLM with all eligible fixed covariates except the
one we are testing.

3. Do a likelihood ratio test (LRT) to compare these
models and get ap value from the asymptoticχ2

1
distribution.

We recognize this method does not include the variance com-
ponent and is thus, not the same model that we are proposing.
The likelihood ratio test for GLM described above provides
an idea about the relative important of various fixed effects
covariates that may be influential for light, moderate or heavy
precipitation. The above procedure may be supplemented by
a multiple testing correction procedure, if needed. The de-
tails of this analysis is available from the authors. Also note
that in this part of the analysis we did not include random
effects, owing to a lack of viable and theoretically justifiable
testing procedure when a random effect is present. Inclusion
of random effects are likely to reduce variance attributed to
noise, thus typically increasing significance levels.

We chose the GLM with all fixed covariates to provide
a test of goodness-of-fit based on residual deviance being
asymptoticallyχ2. For details, refer toFaraway(2006). This
compares the fitted model to the saturated model which con-
tains one parameter for each observation. Failure to reject the
null hypothesis of this test indicates a lack-of-fit.

Finally, a test of the variance component in the GLMM fit
by glmer is done using a LRT with a nonstandard asymp-
totic distribution. Because our models have a single variance

Table 6.This table indicates the percentage of significantp values
at α = 0.05 level for each of the 1973–2013 models.p values for
fixed coefficients and goodness-of-fit test are from LRTs on GLM
fits. p values for the variance components are from LRTs that com-
pare GLM andglmer fits.

Variable Light Moderate Extreme

DMI 84 % 30 % 14 %
Niño34 68 % 20 % 13 %

Fixed

1TT 98 % 95 % 70 %
elevation 95 % 98 % 95 %
max. temp. 100 % 98 % 100 %
min. temp. 75% 100% 40 %
latitude 90 % 30 % 8 %
longitude 90 % 33 % 55 %

Random station 93 % 53 % 28 %

lack-of-fit? 38 % 0 % 0 %

component, the asymptotic distribution for the LRT corre-
sponds half of thep value obtained from theχ2

1 distribu-
tion as noted byZhang and Lin(2008). We only do this test
for glmer since the other two methods do not use maxi-
mum likelihood, although it should be noted the likelihood
produced byglmer is only approximate. Overall, we take a
cautious view on the interpretation of these tests.

5.2.1 Discussion of rainfall models

Results of significance testing for each of the models can be
found in Table6. All covariates were significant in the light
rainfall model in the majority of the years. However, 38 % of
the years showed lack-of-fit based on the deviance test. The
moderate and extreme rainfall models showed no lack of fit,
but had far fewer significant covariates over the years.

Clearly, maximum daily temperature was important in all
three levels of rainfall aligning with the Clausius–Clapeyron
equation regarding water vapor capacity of the atmosphere.
Minimum temperature was significant in most years for light
and moderate rainfall, but was only significant in a minority
of the extreme rainfall models.

Elevation was also significant in many years for all rainfall
levels. This aligns with the physical explanations of warm
moist air cooling at higher altitudes to produce precipitation.

Latitude and longitude were both significant in most light
rainfall years. Moderate and extreme rainfall did not indicate
latitude as significant in most years. Longitude was signifi-
cant in just over half of the extreme models. Coefficient esti-
mates for latitude indicated the probabilities of rain increas-
ing going south to north. Longitude estimates were mostly
negative indicating a decreasing probability of rainfall going
west to east.

DMI was significant for the majority of light rainfall mod-
els; however, it was significant in very few of the moderate
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Figure 2.Top panel: weather station standard deviation estimates for logit-normal models with light Indian rainfall (0< x ≤ 64.4 mm day−1)
as the response from 1973–2013. Estimates over time indicate variability near 0, however, most of theglmer estimates are signifi-
cant at the 0.05 level. Middle panel: weather station standard deviation estimates for logit-normal models with moderate Indian rainfall
(64.4≤ x < 124.4 mm day−1) as the response from 1973–2013. Approximately half of theglmer estimates are significant at the 0.05 level.
Bottom panel: weather station standard deviation estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mm day−1) as the
response from 1973–2013. Approximately one-quarter of theglmer estimates are significant at the 0.05 level
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Figure 3. Fixed coefficient estimates for logit-normal models with light Indian rainfall (0< x < 64.4 mm day−1) response from 1973–2013.

and extreme models. This corresponds to the DMI influ-
ence in non-ENSO drought years as hypothesized in previous
literature.

1TT was significant in most years for all three rainfall
levels corroborating the hypothesis that it is instrumental in
monsoon circulation.

The Niño 3.4 anomaly index was significant in the major-
ity of light rainfall models, but in less than 20 % of both mod-
erate and extreme models. This could be related to the possi-
ble weakening of the relationship between ENSO and the In-
dian monsoon as noted inChang et al.(2001) but may also be
a function of the other covariates included in the modeling.

The station variance component was significant in nearly
all of the light rainfall models. One can note from Fig.2
(top panel), there is less variability in general in light rainfall

even though most years are significant. The variance was
significant in about half of the moderate and a quarter of
the extreme rainfall models. As seen in Fig.2, these mod-
els tended to have higher variability than light rainfall even
though fewer years were significant. The variance compo-
nent does provide additional explanation for the rainfall vari-
ability and thus, vets the methodology use in this application.
This verifies the thesis of this paper: that a significant por-
tion of the variability in any precipitation category is a ran-
dom component that is distinguishable from random noise
variability.

5.2.2 Estimation method performance

The coefficient estimates over the time period for all fixed
effects at each level of rainfall are depicted in Figs.3–5.
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Figure 4. Fixed coefficient estimates for logit-normal models with moderate Indian rainfall (64.4≤ x < 124.4 mm day−1) response from
1973–2013.

The three estimation methods tended to produce different
answers on at least a few of the coefficients in each of the
models. The best agreement amongst all methods occurred in
the estimates for maximum temperature (moderate, extreme),
longitude (light, extreme), and the variance components (all).
Estimates forglmer and MSIM tended to agree more often
than either agreed withdclone . However, they were fairly
different in magnitude for several covariates and did not al-
ways trend with each other. Light rainfall models displayed
slightly more disagreement more than moderate and extreme
rainfall.

Standard deviations fromdclone estimates indicated
that the algorithm had likely not converged for all parameters
in the 10 000 samples taken from the posterior. As mentioned

in Sect.3.3, one of the issues with using this method is dif-
ficulty in assessing convergence. It would likely require a
much larger sample to provide suitable answers in this ap-
plication. Based on this, we would say thedclone results
were mostly inconclusive in this application.

The outcome of this application indicatedglmer and
MSIM provided more reasonable estimates, however, a
longer run ofdclone may also be useful. The three methods
are representative of distinct statistical paradigms of estima-
tion including approximate likelihood, Bayesian, and method
of moments. Each of the methods uses a different algorithm
and different assumptions, thus, we recommend use of mul-
tiple methods when applying GLMM in an application.
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Figure 5. Fixed coefficient estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mm day−1) response from 1973–2013.

6 Conclusions

Outcomes for Indian monsoon rainfall coincide with results
in the Indian monsoon literature providing evidence of the
usefulness of GLMM. Physical constructs are preserved by
the models demonstrated by the importance of elevation,
maximum temperature, and1TT in all levels of rainfall.
Random effects are significant in several of the models in-
dicating promise of modeling some of the unobservable and
complicated interactions that underly climate patterns.

The GLMM methods explored in this article purposely
included several styles of estimation including approximate
likelihood, Bayesian, and method of moments type estima-
tors. Each exhibited some drawbacks, thus, use of at least
two out of three of the best methods,glmer , MSIM, and

dclone , in the context of any application will help verify
consistency of estimates. Use of multiple methods will pro-
vide researchers with higher confidence in results and will be
more robust to limitations of any of the individual methods.

Since the relevance of GLMM in this context has been es-
tablished, climate model output, such as that of CMIP5, will
be explored to gain deeper intuition of the nature of this ran-
dom effect. Further work on GLMMs may include studying
other proposed drivers of Indian monsoons in their contribu-
tions to fixed or random effects. Additional random effects
that include spatial correlation will be tested in future work.
We also note that this model could be pursued in the future
as a multinomial logit model.

It was suggested that Normalized Difference Vegetation
Index (NDVI) may be a useful covariate for understanding
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feedback of vegetation on precipitation. However, data cov-
erage was limited, thus, it was not included in our models. It
will be examined more closely in future modeling efforts.

Providing improvements to the GLMM estimation meth-
ods is another open research area. One limitation of GLMM,
as presented here, is the reliance of modeling random ef-
fects as normal. Expanding the possible distributions of ran-
dom effects to include extreme value distributions would be
a breakthrough in mixed modeling. Providing more conclu-
sive tests of significance for fixed and random effects is also
important.
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Appendix A: Additional specifications for simulations
and applications

Computers used

– Assawa: 2010 Frontier i7 8-core Intel i7 940 (2.93 GHz)
with 3 GB of RAM

– Geneva: 2011 Frontier i7 8-core Intel i7 950 (3.07 GHz)
with 6 GB of RAM

– Nokomis: 2012 Optiplex 7010 8-core Intel i7-3770
(3.40 GHz) with 8 GB of RAM

– Tilde: 2013 Optiplex 7010 8-core Intel i7-3770
(3.40 GHz) with 8 GB of RAM

MSIM fast

– Number of Monte Carlo simulations: 100 000

MSIM slow

– Number of Monte Carlo simulations: 100

– Convergence criterion for Newton Raphson Method:
Euclidean norm of change≤ .01

Dclone

– Clones: 5

– Prior forµ: N(0, 1
0.0001)

– Prior for 1
σ2 : Gamma (0.01, 0.01)

– Adaptation length: 100

– Markov chain length after adaptation: 10 000
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