Articles | Volume 21, issue 6
https://doi.org/10.5194/npg-21-1145-2014
https://doi.org/10.5194/npg-21-1145-2014
Research article
 | 
01 Dec 2014
Research article |  | 01 Dec 2014

Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling

D. Das, J. Dy, J. Ross, Z. Obradovic, and A. R. Ganguly

Related authors

Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques
A. R. Ganguly, E. A. Kodra, A. Agrawal, A. Banerjee, S. Boriah, Sn. Chatterjee, So. Chatterjee, A. Choudhary, D. Das, J. Faghmous, P. Ganguli, S. Ghosh, K. Hayhoe, C. Hays, W. Hendrix, Q. Fu, J. Kawale, D. Kumar, V. Kumar, W. Liao, S. Liess, R. Mawalagedara, V. Mithal, R. Oglesby, K. Salvi, P. K. Snyder, K. Steinhaeuser, D. Wang, and D. Wuebbles
Nonlin. Processes Geophys., 21, 777–795, https://doi.org/10.5194/npg-21-777-2014,https://doi.org/10.5194/npg-21-777-2014, 2014

Related subject area

Subject: Predictability, probabilistic forecasts, data assimilation, inverse problems | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Prognostic assumed-probability-density-function (distribution density function) approach: further generalization and demonstrations
Jun-Ichi Yano
Nonlin. Processes Geophys., 31, 359–380, https://doi.org/10.5194/npg-31-359-2024,https://doi.org/10.5194/npg-31-359-2024, 2024
Short summary
Bridging classical data assimilation and optimal transport: the 3D-Var case
Marc Bocquet, Pierre J. Vanderbecken, Alban Farchi, Joffrey Dumont Le Brazidec, and Yelva Roustan
Nonlin. Processes Geophys., 31, 335–357, https://doi.org/10.5194/npg-31-335-2024,https://doi.org/10.5194/npg-31-335-2024, 2024
Short summary
Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data assimilation
Fumitoshi Kawasaki and Shunji Kotsuki
Nonlin. Processes Geophys., 31, 319–333, https://doi.org/10.5194/npg-31-319-2024,https://doi.org/10.5194/npg-31-319-2024, 2024
Short summary
Selecting and weighting dynamical models using data-driven approaches
Pierre Le Bras, Florian Sévellec, Pierre Tandeo, Juan Ruiz, and Pierre Ailliot
Nonlin. Processes Geophys., 31, 303–317, https://doi.org/10.5194/npg-31-303-2024,https://doi.org/10.5194/npg-31-303-2024, 2024
Short summary
Improving ensemble data assimilation through Probit-space Ensemble Size Expansion for Gaussian Copulas (PESE-GC)
Man-Yau Chan
Nonlin. Processes Geophys., 31, 287–302, https://doi.org/10.5194/npg-31-287-2024,https://doi.org/10.5194/npg-31-287-2024, 2024
Short summary

Cited articles

Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Ann. Stat., 2, 1152–1174, 1974.
Bader, D. C., Covey, C., Gutkowski Jr., W. J., Held, I. M., Kunkel, K. E., Miller, R. L., Tokmakian, R. T., and Zhang, M. H.: Climate Models: An Assessment of Strengths and Limitations, US Climate Change Science Program Synthesis and Assessment Product 3.1, Department of Energy, Office of Biological and Environmental Research, 124 pp., available at: http://pubs.giss.nasa.gov/docs/2008/2008_Bader_etal_1.pdf (last access: 20 July 2014), 2008.
Basu, S., Bilenko, M., Banerjee, A., and Mooney, R.: Probabilistic semi-supervised clustering with constraints, J. Mach. Learn. Res., 71–98, 2006.
Benestad, R., Hanssen-Bauer, I., and Chen, D.: Empirical-Statistical Downscaling, World Scientific Publishing Company, New Jersey, London, 2008.
Bishop, C. and Svenskn, M.: Bayesian hierarchical mixtures of experts, in: Uncertainty in Artificial Intelligence, Morgan Kaufman, San Francisco, CA, 57–64, 2002.