Articles | Volume 21, issue 6
https://doi.org/10.5194/npg-21-1127-2014
https://doi.org/10.5194/npg-21-1127-2014
Research article
 | Highlight paper
 | 
27 Nov 2014
Research article | Highlight paper |  | 27 Nov 2014

Correlations between climate network and relief data

T. K. D. Peron, C. H. Comin, D. R. Amancio, L. da F. Costa, F. A. Rodrigues, and J. Kurths

Related authors

Multifractality of Climate Networks
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793,https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023,https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Exploring meteorological droughts' spatial patterns across Europe through complex network theory
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023,https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Interacting tipping elements increase risk of climate domino effects under global warming
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021,https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.: Complex networks: Structure and dynamics, Phys. Rep., 424, 175–308, 2006.
Clauset, A., Newman, M. E., and Moore, C.: Finding community structure in very large networks, Phys. Rev. E, 70, 066111, https://doi.org/10.1103/PhysRevE.70.066111, 2004.
Costa, L., Rodrigues, F., Travieso, G., and Boas, P.: Characterization of complex networks: A survey of measurements, Adv. Phys., 56, 167–242, 2007.
da Fontoura Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., and Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications, Adv. Phys., 60, 329–412, 2011.
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: The backbone of the climate network, EPL-Europhys. Lett., 87, 48007, https://doi.org/10.1209/0295-5075/87/48007, 2009a.
Download
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.