Articles | Volume 21, issue 6
Nonlin. Processes Geophys., 21, 1127–1132, 2014
https://doi.org/10.5194/npg-21-1127-2014

Special issue: Complex network approaches to analyzing and modeling nonlinear...

Nonlin. Processes Geophys., 21, 1127–1132, 2014
https://doi.org/10.5194/npg-21-1127-2014
Research article
 | Highlight paper
27 Nov 2014
Research article  | Highlight paper | 27 Nov 2014

Correlations between climate network and relief data

T. K. D. Peron et al.

Related authors

Spatio-temporal synchronization of heavy rainfall events triggered by atmospheric rivers in North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
EGUsphere, https://doi.org/10.5194/egusphere-2022-530,https://doi.org/10.5194/egusphere-2022-530, 2022
Short summary
Interacting tipping elements increase risk of climate domino effects under global warming
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021,https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Recurrence analysis of extreme event-like data
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021,https://doi.org/10.5194/npg-28-213-2021, 2021
Influence of extreme events modeled by Lévy flight on global thermohaline circulation stability
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31,https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Optimal design of hydrometric station networks based on complex network analysis
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020,https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta
Joko Sampurno, Valentin Vallaeys, Randy Ardianto, and Emmanuel Hanert
Nonlin. Processes Geophys., 29, 301–315, https://doi.org/10.5194/npg-29-301-2022,https://doi.org/10.5194/npg-29-301-2022, 2022
Short summary
Empirical adaptive wavelet decomposition (EAWD): an adaptive decomposition for the variability analysis of observation time series in atmospheric science
Olivier Delage, Thierry Portafaix, Hassan Bencherif, Alain Bourdier, and Emma Lagracie
Nonlin. Processes Geophys., 29, 265–277, https://doi.org/10.5194/npg-29-265-2022,https://doi.org/10.5194/npg-29-265-2022, 2022
Short summary
Predicting sea surface temperatures with coupled reservoir computers
Benjamin Walleshauser and Erik Bollt
Nonlin. Processes Geophys., 29, 255–264, https://doi.org/10.5194/npg-29-255-2022,https://doi.org/10.5194/npg-29-255-2022, 2022
Short summary
Lévy noise versus Gaussian-noise-induced transitions in the Ghil–Sellers energy balance model
Valerio Lucarini, Larissa Serdukova, and Georgios Margazoglou
Nonlin. Processes Geophys., 29, 183–205, https://doi.org/10.5194/npg-29-183-2022,https://doi.org/10.5194/npg-29-183-2022, 2022
Short summary
Using neural networks to improve simulations in the gray zone
Raphael Kriegmair, Yvonne Ruckstuhl, Stephan Rasp, and George Craig
Nonlin. Processes Geophys., 29, 171–181, https://doi.org/10.5194/npg-29-171-2022,https://doi.org/10.5194/npg-29-171-2022, 2022
Short summary

Cited articles

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.: Complex networks: Structure and dynamics, Phys. Rep., 424, 175–308, 2006.
Clauset, A., Newman, M. E., and Moore, C.: Finding community structure in very large networks, Phys. Rev. E, 70, 066111, https://doi.org/10.1103/PhysRevE.70.066111, 2004.
Costa, L., Rodrigues, F., Travieso, G., and Boas, P.: Characterization of complex networks: A survey of measurements, Adv. Phys., 56, 167–242, 2007.
da Fontoura Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., and Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications, Adv. Phys., 60, 329–412, 2011.
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: The backbone of the climate network, EPL-Europhys. Lett., 87, 48007, https://doi.org/10.1209/0295-5075/87/48007, 2009a.
Download
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.