Articles | Volume 25, issue 1
https://doi.org/10.5194/npg-25-175-2018
https://doi.org/10.5194/npg-25-175-2018
Research article
 | 
05 Mar 2018
Research article |  | 05 Mar 2018

A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 2: Extension to time–frequency analysis

Guillaume Lenoir and Michel Crucifix

Related authors

A general theory on frequency and time–frequency analysis of irregularly sampled time series based on projection methods – Part 1: Frequency analysis
Guillaume Lenoir and Michel Crucifix
Nonlin. Processes Geophys., 25, 145–173, https://doi.org/10.5194/npg-25-145-2018,https://doi.org/10.5194/npg-25-145-2018, 2018
Short summary

Related subject area

Subject: Time series, machine learning, networks, stochastic processes, extreme events | Topic: Climate, atmosphere, ocean, hydrology, cryosphere, biosphere
Representation learning with unconditional denoising diffusion models for dynamical systems
Tobias Sebastian Finn, Lucas Disson, Alban Farchi, Marc Bocquet, and Charlotte Durand
Nonlin. Processes Geophys., 31, 409–431, https://doi.org/10.5194/npg-31-409-2024,https://doi.org/10.5194/npg-31-409-2024, 2024
Short summary
Characterisation of Dansgaard–Oeschger events in palaeoclimate time series using the matrix profile method
Susana Barbosa, Maria Eduarda Silva, and Denis-Didier Rousseau
Nonlin. Processes Geophys., 31, 433–447, https://doi.org/10.5194/npg-31-433-2024,https://doi.org/10.5194/npg-31-433-2024, 2024
Short summary
Evaluation of forecasts by a global data-driven weather model with and without probabilistic post-processing at Norwegian stations
John Bjørnar Bremnes, Thomas N. Nipen, and Ivar A. Seierstad
Nonlin. Processes Geophys., 31, 247–257, https://doi.org/10.5194/npg-31-247-2024,https://doi.org/10.5194/npg-31-247-2024, 2024
Short summary
The sampling method for optimal precursors of El Niño–Southern Oscillation events
Bin Shi and Junjie Ma
Nonlin. Processes Geophys., 31, 165–174, https://doi.org/10.5194/npg-31-165-2024,https://doi.org/10.5194/npg-31-165-2024, 2024
Short summary
A comparison of two causal methods in the context of climate analyses
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024,https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary

Cited articles

Berger, A. L.: Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements, Quaternary Res., 9, 139–167, https://doi.org/10.1016/0033-5894(78)90064-9, 1978.
Berger, A. L., Loutre, M. F., and Mélice, J. L.: Instability of the atsronomical periods from 1.5 Myr BP to 0.5 Myr AP, Paleoclimates, 2, 239–280, 1998.
Brockwell, P. and Davis, R.: Time Series: Theory and Methods, Springer Series in Statistics, Second edn., Springer, New York, USA, 1991.
Carmona, R., Hwang, W., and Torresani, B.: Characterization of signals by the ridges of their wavelet transforms, IEEE T. Signal Proces., 45, 2586–2590, https://doi.org/10.1109/78.640725, 1997.
Carmona, R., Hwang, W., and Torresani, B.: Multiridge detection and time-frequency reconstruction, IEEE T. Signal Proces., 47, 480–492, https://doi.org/10.1109/78.740131, 1999.
Short summary
There is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework with the Morlet wavelet, based on the results of part I of this study. We also design a test of significance against a general background noise which encompasses the Gaussian white or red noise. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.